
Ethereum Eth1.x WG3: Simulation

https://github.com/ethereum/ethsim

This document is to capture the infrastructure, platform, and requirements for simulation towards
an Eth1.x feature list for inclusion in an upcoming hard fork. The simulation platform is intended
to resolve questions that the community has about where we are at, where we are headed, and
what we need to know and do to get there. The structure of the document will capture as-is
state, to-be state, and potential transition paths from the as-is to the to-be state.

Key concepts:

●​ Simulation: a mathematical model to provide probabilistic data sets for performance or
whatever else.

●​ Emulation: functionally replaces these processes to provide a practical and functional
model of a system

●​ Testnets: This term covers platforms running one or more chains and clients with a wide
spectrum of properties, from long-running, unpermissioned chains to permissioned
chains lasting only seconds.

●​ Test plan: A plan for a testnet run, describing properties like configuration and starting
state. See here for an example:​
https://notes.ethereum.org/Q_kQKXZUQD29YCshej1qPQ

●​ Infrastructure: machine instances to be used for testing.
●​ Platform: code + infrastructure that is to be used for testing.
●​ Eth1.x Features: See the overview document here.
●​ POC: point of contact

Minutes from Dec 7

Updates after some comments and reviews (Nov 27, 2018):

General Instructions:

1.​ Fill in your name and email address (plus any other contact info) in the participant
section.

2.​ Indicate your role in the notes, such as which feature you're helping to coordinate.
3.​ Review the document and comment as a way to suggest changes. There are various

areas on which to comment: testnet platforms, client tests, simulation platforms,
simulation tests, integration tests.

4.​ Those who manage bootnodes and instances should report their role in the participants
table.

5.​ If you are a contact for bootnodes and instances and are running a specified feature,
provide the relevant addresses, docker links, info in the table at the end of this doc.

6.​ For support, comments and questions, contact Shahan.

https://github.com/ethereum/ethsim/blob/master/README.md
https://notes.ethereum.org/Q_kQKXZUQD29YCshej1qPQ
https://notes.ethereum.org/Q_kQKXZUQD29YCshej1qPQ
https://docs.google.com/document/d/1xdnSQcRnYa6AXtz3w0Bx8MAfNZxhEL2lrzp0fR9zL1g/edit
https://docs.google.com/document/d/1KsjC0n4uM-v9HIBG3pEykqBNn6733QRhbPr-xdc1AHg/edit#heading=h.apv3qpslw8li

Participants:

Name Notes

Shahan Khatchadourian (PegaSys),
shahan.khatchadourian@consensys.net,
Telegram: @shahankhatch

WG POC

Casey Detrio eWASM

Alexey Akhunov State

Piper Merriam My team is adopting `ethereum/tests` and
cross client testing within the EF. This seems
potentially related.

Zak Cole (Whiteblock)
zak@whiteblock.io
Telegram: @zcole

Testnet Platforms – Whiteblock testing
environment and open source framework.

Summary of target properties to test (discussion is below):

1.​ Block propagation, to reduce uncle rate
2.​ If yes, raise gas block limit
3.​ If yes, consider increasing cost of storage wrt compute
4.​ Determining what the next bottleneck is

a.​ Assume compute time is reduced
b.​ Assume bandwidth limit results in many uncles

The plan is to work towards the following setups

1.​ Simulation framework that develops a mathematical model given some datasets and can
produce output that might estimate properties (currently Wittgenstein is suggested)

2.​ Emulation framework that launches functional instances and alters environment
conditions in order to test properties (currently being designed by Whiteblock)

3.​ Testnet that launches instances together on the same network to ensure there are no
unexpected hiccups in client interop (the idea of a testnet should be reviewed).

In order for a simulation/emulation framework to be useful, datasets (assumed to be accurate)
are being collected here in order to determine appropriate parameters to test:

1.​ Whiteblock's prior experience with testing uncle rates.
2.​ Data from external sources, e.g., etherscan

mailto:shahan.khatchadourian@consensys.net
mailto:zak@whiteblock.io
https://github.com/ConsenSys/wittgenstein
https://drive.google.com/open?id=1cJRMKxhGBzXMxNBcPi011Mg5e2Dw1JU1
https://docs.google.com/a/consensys.net/document/d/1pIW6Uac5Qanx_L5Y_G4Ucrx_gjITkBgzQKmlBQbW3Cg/edit?disco=AAAACVBn-E4
https://etherscan.io/chart/uncles

3.​ Properties drawn from various sources, like research papers, a number of these
properties have already been incorporated into this simulation framework

Old notes below here

Important notes:

1.​ Since the simulation framework does not yet exist, we are starting with the coordination
of non-simulated testnets.

2.​ Please update the document as per the general instructions below.
3.​ As soon as possible, please update the list of relevant docker containers and EIPs that

they integrate as part of understanding the clients to to be launched for test.

Goals:

1.​ Support clients and core developers in two mainnet needs, for (1) being a peer on the
Ethereum mainnet network, such as by reducing state storage requirements, and (2) for
supporting novel community applications, by supporting deployment and execution of
ewasm-based smart contracts.

2.​ Determine the best way to serve peer and end user needs using Eth1.x simulations and
one or more testnets for each feature.

3.​ Open collaboration of clients and participants by sharing information and obtaining
feedback.

As-is:

Platforms:
There are a few testnets running, but they aren't planned to be upgraded or used for this work
(as far has been mentioned so far, this can change). The plan is to have a new simulation
framework and platform, with the intent to reuse as much of existing code and simulation
frameworks as possible.

To-be:
Platform Options (can do one or more of these):

1.​ Run a testnet as usual, with no simulation platform. Add tests into the GeneralState tests
framework however much possible. This ensures that the clients operate in a
"backwards compatible" way.

2.​ Run a testnet with the baseline simulation platform to test various network latencies and
expectations. This will require definitions and configurations that are usable by the
framework and understood by the various teams. As with open source, there will be a

https://github.com/ConsenSys/wittgenstein

mechanism for collaborating on the open source project. The current timeline is
beginning of January, but this should be discussed.

Infrastructure: Nodes running clients that wish to participate in the testnet. The code initially will
be Docker for running an Ethereum for a particular feature.
With 2 features being considered, we initially aim to have (at least) 2 testnets:

(1)​Statement management testnet(s)
(a)​Determine the baseline client for this configuration. The experts should fill in the

exact details, including genesis, environment configuration, etc. If possible, have
the tests as part of the general state tests.

(b)​Part of this work is applying the state pruning code / ideas into the clients. This
will take time and the sequencing of which parts of the code need to be updated
needs to go through EIPs. There are several views on whether some of the
proposals are actually viable and semantically correct for the mainnet.

(2)​ eWASM testnet(s)
(a)​Determine the baseline client for this configuration. The experts should fill in the

exact details, including genesis, environment configuration, etc. If possible, have
the tests as part of the general state tests.

(b)​ ewasm already has its changes in geth, and a testnet (which I could not access),
though the team says that they will give an update on access details very soon.

(i)​ There are some environment configurations that differ from mainnet
expectations. See here.

Platform features that aim to be addressed through this document:

1.​ Bootnodes will be managed by testnet POCs for each stream of work.
2.​ Instances not yet running on the simulation platform are to be self-managed by

participating clients (the "backwards compatible" approach).
3.​ When a simulation platform is to be used, the instances will be testnet-managed

instances, such that the instances are launched, simulated given set parameters, then
shutdown. The results are collected and shared by simulation testnet POCs.

4.​ Links to Docker images containing the features to be explored, for each of the clients.
5.​

The process of merging the multiple features will be discussed based on their dependencies,
e.g., gas limits vs storage requirements.

Immediate Solution

While the development of this open-source framework may take some time, an immediately
available solution is the implementation of a permissioned testnet by Whiteblock and made
available to the Ethereum Core Dev team. The network and primary nodes will be provisioned
and managed by Whiteblock. Transactional behavior will be automated and individuals who

https://github.com/ewasm/testnet

wish to participate by provisioning their own nodes within the network need only provide their
enode address and ensure their client is running on the appropriate network ID.

The parameters, configuration, and other behaviors of the testnet can be modified in real-time
based on the consensus of the network participants in order to implement particular test cases
and conditions, allowing for the simulation of various scenarios.

Some good notes, comments, and views from other testnets and hardforks (relevant parts of the
notes will be referenced in this document):
https://ethereum-magicians.org/t/issues-we-discovered-in-the-ropsten-constantinople-hard-fork/
1598/7

https://ethereum-magicians.org/t/issues-we-discovered-in-the-ropsten-constantinople-hard-fork/1598/7
https://ethereum-magicians.org/t/issues-we-discovered-in-the-ropsten-constantinople-hard-fork/1598/7

The following table is intended to capture the testnets for this working group. This table can also
be used to capture other testnets if you wish (and the table can be restructured for clarity as
needed):

Testnet Bootnode Clients Simulated? EIPs

ExampleTestnet1
POC: Shahan

Does not exist
yet

Parity, Geth No eWASM

ExampleTestnet2
POC: Shahan

127.0.0.1:124 Pantheon Yes None

 No State

 Yes State

There will be additional tables that will be added here soon to capture the simulation parameters
of note for each feature. This will cover, system configs as well as inputs. Like simulation
framework links, network latency, disk/memory usage, ethereum configs, tx sources, result
output.

Simulation references (more info on platform coming soon):
1. Ethereum info
https://theethereum.wiki/w/index.php/Network_Ports,_Files_And_Directories

2. TCP Proxy
https://github.com/Shopify/toxiproxy​
TCP-based proxy, which suffices for non-UDP components of Ethereum networking, i.e., peer

https://github.com/paritytech/parity-ethereum
https://github.com/ewasm/testnet
https://github.com/PegaSysEng/pantheon
https://theethereum.wiki/w/index.php/Network_Ports,_Files_And_Directories
https://github.com/Shopify/toxiproxy

discovery is the only UDP-based component. This can be resolved through manual
configuration of peer addresses.

3. Docker container chaos management:
https://github.com/alexei-led/pumba
https://hackernoon.com/chaos-testing-for-docker-containers-bc6e9d66645

4. netem module
https://wiki.linuxfoundation.org/networking/netem
​
Notes from Alexey

HI! I don’t know how to integrate my comment into this document yet, but here are my thoughts
on the first things we could simulate.
I assume that there is currently a simulation being worked on to test whether the block
propagation fix will bring the uncle rate down.
Assuming that it will, the next thing everyone would likely to want doing to raise gas block limit.
However, we might want to do that, and simultaneously making storage operations more
expensive, effectively reducing the cost of computation compared to the status quo. That would
be a hard fork, but a simple one.
Then, the next thing we might want to ponder, where is our next bottleneck lies. Imagine that we
keep increasing block gas limit. What will happen first - our nodes will start lagging behind the
chain because the computation of a block will be less than 1/10 th of the average time (I
remember Peter called it a rough safety margin), or bandwidth will get exhausted and we will
have lots of uncles again. Based on that, we would need to establish a recommended safe
block gas limit for the network to have.

More from Alexey
Something more controversial, but aso maybe more exciting. Inspried by this (stress test on
Bitcoin Cash networks):
https://www.reddit.com/r/btc/comments/a1bp0b/please_send_me_your_debuglog_files_from_th
e_bsv/
I am suggesting to implement stress test mode in the mainnet clients. It could be transactions
marked by a special flags, so that they have two special properties. Although they are included
into the blocks and pay miners reward, they update a “shadow state”, which is add-on to the
existing state at the start of the stress test. After the end of the stress test, the “shadow state”
gets evicted from the state completely. There is a sub-protocol allowing anyone to download
logs (with proper anonymisation). Etc… Do you think this is a dangerous idea?

Shahan's summary of target properties to test from above thoughts:

5.​ Block propagation, to reduce uncle rate
6.​ If yes, raise gas block limit

https://github.com/alexei-led/pumba
https://hackernoon.com/chaos-testing-for-docker-containers-bc6e9d66645
https://wiki.linuxfoundation.org/networking/netem
https://www.reddit.com/r/btc/comments/a1bp0b/please_send_me_your_debuglog_files_from_the_bsv/
https://www.reddit.com/r/btc/comments/a1bp0b/please_send_me_your_debuglog_files_from_the_bsv/

7.​ If yes, consider increasing cost of storage wrt compute
8.​ Determining what the next bottleneck is

a.​ Assume compute time is reduced
b.​ Assume bandwidth limit results in many uncles

