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Abstract
Dimension reduction is useful for exploratory data analysis. In many applications, it is of interest
to discover variation that is enriched in a "foreground" dataset relative to a "background"
dataset. In this talk, I propose two new models for this “contrastive learning” task. First, I
propose probabilistic contrastive principal component analysis (PCPCA), a model-based
alternative to contrastive PCA. I discuss several of PCPCA's advantages, including greater
interpretability, uncertainty quantification, robustness to noise and missing data, and the ability
to generate data from the model. Second, I propose the contrastive Poisson latent variable
model (CPLVM). The CPLVM is an extension of PCPCA that is designed to model count-based
data, such as single-cell RNA-seq data. Using this model, I propose a hypothesis testing
framework that is able to detect global contrastive changes across features, as well as changes
specific to subsets of features. I demonstrate the performance of these two models through a
series of simulations and experiments with datasets of gene expression, protein expression, and
images.
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