
Problem Statement: Enterprise Control for K8S
raew@google.com, rayc@google.com March 2017
Public Document

Customer Story
A SaaS provider builds an online retail platform both for their own stores and for their
customers’ stores. Their customers are the retailers who run stores on this platform. The SaaS
provider likes the appeal of K8S and want to use a single cluster for the many tenants on their
platform, running a dedicated stack per tenant. This way they can optimize resource usage and
have a central place for managing the infrastructure. The software for each store is run by allied
teams who are part of the same organization.

However they have the following policy needs

●​ Each store should only be able to access their own data
●​ Each store can have quota set separately to prevent abuse
●​ Each store’s cost can be tracked separately so that customers (other retailers on their

platform) can be billed

The different departments in the company operate as autonomous units with some central
constraints

●​ Each team should have separate permissions, quota, cost analysis (similar requirements
for the different stores above)

●​ Different teams (eg. HR vs R&D) and different environments (eg. dev/test vs prod) can
also set different configuration constraints. For example production environments should
only have the minimal set of services enabled, only use approved VM images etc.
Whereas dev/test can offer more flexibility

Analysis
K8S allows customers to binpack many services to a cluster and manage the lifecycle of these
services and clusters. Enterprise customers are realizing that like other resources, a K8S cluster
doesn’t exist in isolation. How multiple departments, teams, services interact with each other
become an important part of the enterprise K8S experience. Some common challenges

●​ Multiple services run on the same cluster are owned by different teams and therefore
need separate policies such as billing, quota, IAM etc at service granularity.

mailto:raew@google.com
mailto:rayc@google.com

●​ A company owns multiple clusters - eg. required by compliance, to minimize blast radius,
to be close to customers, etc. The multiple clusters still need to be centrally visible and
controlled by the organization’s admin team. Workloads running on clusters need to
adhere to company wide policies (eg. which images are allowed, whether external IP can
be set up etc)

○​ Single services running across multiple clusters should have one set of policies,
have their usage be on the same bill, etc.

○​ Identities and authentication are centralized among all clusters running for a
company.

○​ The ability to partition out a cluster to certain teams. E.g. X team gets access to
the european and asian clusters but Y team does not.

This is aligned with enterprise control needs for Cloud in general - the flexibility of granular
policies + the power of central control

Related
Cluster federation provides a single API entry and global domain/namespace across multiple
clusters. It enables services across clusters to communicate with each other and simplifies
deployments across clusters. A cluster joining a federation is voluntary. Therefore federation
alone doesn’t provide organization wide enforcement. An employee can create a cluster without
joining the federation and therefore the admin won’t know about it.

In addition to a long history of hierarchical configuration in Active Directory, all three major cloud
providers (aws, gcp, azure) are converging on this model for management of resources. AWS
recently released “AWS organizations”, GCP has the “Organization Hierarchy” and Azure has
“Resource Groups”. This suggests that customers will be well conditioned to using hierarchies to
manage cloud resources. Aligning Kubernetes with this model would make cross-cloud
deployments easier.

OpenShift 3 syncs groups from LDAP. OpenShift 3 is built on Kubernetes, so its patterns should
be directly applicable.
https://docs.openshift.com/enterprise/3.1/install_config/syncing_groups_with_ldap.html

CoreOS Tectonic can extract LDAP groups, via Dex, and map them to RBAC Roles via
Kubernetes OIDC support.

Some requirements
●​ Hierarchical namespace configuration that allows per-namespace Auth and Resource

Quotas to be defined at multiple levels.
●​ Authentication is centralized among all clusters and compatible with existing on-prem

and cloud authentication systems (Any OIDC Provider, AD, Okta, Ping, etc)

https://github.com/kubernetes/kubernetes/blob/master/docs/proposals/federation.md
https://docs.openshift.com/enterprise/3.1/install_config/syncing_groups_with_ldap.html
https://github.com/coreos/dex/blob/master/Documentation/ldap-connector.md
https://github.com/coreos/dex
https://kubernetes.io/docs/admin/authentication/#option-1---oidc-authenticator

●​ Ability to hierarchically set restrictions on configuration such as allowed docker repos
etc.

K8S primitives support
●​ There is a namespace controller.
●​ When it is activated (the cluster is enrolled):

○​ The cluster is configured to give the namespace controller permission to create
and delete namespaces.

○​ The cluster is configured to deny users access to CRUD namespaces. They
cannot use kube commands directly on a cluster to create namespaces.

○​ Users can only create namespaces by editing an external database (e.g. LDAP).
This database may be selfserve or centrally controlled which is a matter of IT
policy.

○​ The Namespace Controller syncs the namespaces to the cluster from LDAP.
○​ There is no hierarchy that Kubernetes core is aware of. Hierarchy exists only in

the LDAP database and the things that control what it contains TBD: is there
hierarchy discoverable from the individual namespace names (via name,
annotation, label, etc?) Or only by consulting the LDAP database?

●​ It seems possible to reuse much of the work in Cluster Federation to sync namespaces
into clusters.

●​ The namespace provider could also sync resource quota from LDAP. Maybe also
configure what are the allowed docker repos, and other configuration stuff.

Strawman for LDAP Implementation using new K8S primitives

●​ Create an LDAP Namespace Provider that allows hierarchal storage of configuration.
LDAP is an open source directory service protocol that is still widely supported by Active
Directory and various open source implementations including OpenLDAP and Apache
Directory Service.

○​ Create a service that can read all the namespaces out of LDAP and sync them
with every enrolled cluster.

●​ Create a service that can use LDAP as the source of truth for identities.
○​ We would use standard identity schemas (inetorgperson, etc) where possible.
○​ This service would integrate with K8S authentication.

●​ Develop a new set of custom K8S LDAP object classes and attributes to define a
namespace and the types of attributes that are allowed to be set on a namespace..

○​ For orgs that have existing directories, they can add the K8S schema to their
directories and use their own business processes for configuring cluster
namespace and their policies.

http://www.zytrax.com/books/ldap/ch3/

●​ Write a webhook authorizer that uses LDAP hierarchies to provide authorization to
users.

○​ Each namespace and its parents would have an authorization policy attached
that is inherited. This allows centralized authorization to all clusters.

○​ Within the LDAP directory, the top level DN becomes the root node for all K8S
namespaces giving Admin Control.

●​ We develop admission controllers that talk to LDAP and read the custom schema to
enforce hierarchical configuration.

●​ It should be possible using different directory domains to isolate clusters from one
another.

Open Questions
●​ Do we use a webhook authorizer and delegate authorization to an external system, or do

we use K8S RBAC and sync permissions into K8S clusters.
○​ A downside of RBAC: It seems that RBAC stores policies locally in K8S clusters

and therefore would requiring syncing from a master system. This could lead to
permissions revocations failing or taking a while to reach eventual consistency
with the master store.

○​ I don't think you want to remove RBAC entirely because then it is hard to handle
user-provided APIs, without putting LDAP in the loop. May need some
exceptions where users can add RBAC that is not synced, as long as it is not any
more powerful than LDAP-based policy would allow.

○​
●​ Can we use admission controllers to:

○​ restrict quota? Yes, can sync to ResourceQuota objects from LDAP or other DB.
○​ allowed repos? Use webhook.

	Problem Statement: Enterprise Control for K8S raew@google.com, rayc@google.com March 2017
	Customer Story
	Analysis
	Related
	Some requirements
	K8S primitives support
	Open Questions

