Chapter 5 Outline **Electrons in Atoms** | LIECTIONS III AIOMS | to another. | | | |--|---|--|--| | Section 5.1 – Models of the Atom | A of energy is the amount of | | | | The model of the atom did not explain how an atom can or the chemical properties of an atom. | energy required to move an from one to another. | | | | Niels Bohr studied the atom because it was the most | An electron must to jump to a energy level. | | | | proposed that an electron is found only in specific paths, or, | When an has jumped to a energy level, it is in an | | | | around the nucleus. | An electron must to fall to a | | | | Each possible electron in Bohr's model | energy level. | | | | has a The fixed energies | When an is at the energy | | | | an can have are called | level possible, it is at | | | | • The together as you move from the nucleus. | model accurately describes the
movement of an electron in the
atom, but it cannot describe the movement of | | | | The also get higher in | atoms. | | | | as you move farther from the | The of the atom is based on the mathematical | | | • Electrons can _____ from one ____ | of the location of | | |--|--| | using the Schrodinger equation. | | | The quantum mechanical model stills has , but the exact path or | | | orbit of the electron is | Bohr's Model Quantum Mechanical Model | | Since the quantum mechanical model is based on the of finding an electron, then the are normally shaded with | | | a edge. | Each can be composed of
multiple | | An is a region of space in | | | which there is a of | are assigned a number | | finding an | from based on the on the periodic table. | | Within the of an atomic orbital, | periodic rabie. | | there is a chance of finding an electron. | Each can be composed of
multiple | | The the shading of the orbital, the the chance of finding an | The are assigned a letter: | | 4 Atomic Models | · | | Plum Pudding Model Rutherford's Model | Each can hold a maximum of | | | · | | All have orbital and can
hold a maximum of electrons. | All have orbitals and can
hold a maximum of electrons. | | | | |---|---|------------------|--|--| | The in front of s represents the, As the energy level, the of the stubleyel, | There are not enough g sublevels yet. | to fill in the | | | | the, of the s sublevel, but it can still only hold electrons. (Ex: 1s, 2s, 3s, | Sublevel # of Orbitals | # of Electrons | | | | etc.) | s 1 | 2 | | | | • The has a shape. | р 3 | 6 | | | | All have orbitals and can | d 5 | 10 | | | | hold a maximum of electrons. | f 7 | 14 | | | | The p sublevel has a or or | g 9 | 18 | | | | shape. Each tear drop is referred to as a • All have orbitals and can hold a maximum of electrons. | Section 5.1 Assessment Why did Rutherford's atomic not replaced? | nodel need to be | | | | The d sublevel has a shape (4 lobes) or 2 lobes and a All have orbitals and can hold a maximum of electrons. | 2. What was the basic new prop model of the atom? | osal in the Bohr | | | | 3. What does the quantum mechanical model determine about electrons in atoms? | principle states that electrons | |---|--| | acterrine about electrons in atoms? | occupy the energy levels first. | | | | | 4. How do two sublevels of the same principle | The following is a diagram of the order of the | | energy level differ from each other? | sublevels. | | energy to ver amer herri ederi emer. | • states that an orbital | | | can hold at most electrons. | | 5. How can electrons in an atom move from one | When electrons occupy the same | | energy level to another? | they have spins. | | energy lever to anomery | • states that electrons would | | | rather be than together in a | | 6. How many orbitals are in the following | sublevel with multiple orbitals. | | sublevels? | When you write the configuration | | a. 3p | for an element, the first step is to determine the | | · | number of by using the | | b. 2s | Figure 21 by using the | | c. 4p | · | | d. 3d | For charged particles, | | e. 4f | electrons. For charged particles, | | Section 5.2 – Electron Arrangement in Atoms | electrons. | | • The of an atom is | The are represented as | | the arrangement of the | above the sublevel. | | There are 3 rules that govern the electron | | | configuration: | | | | | | • The are represented by | | |--|---| | There can only be one arrow and one | When you write the electron configuration in | | arrow in each | form, the number of | | | in each sublevel is written as a | | Sample Problems | You fill in the in the same order, | | Write the arrow electron configuration for the | but after you the sublevels in | | following: | order. | | • B | • Ex: 1s, 2s, 2p, 3s, 3p, 4s, 3d | | • N | Sample Problem | | | Write the standard electron configuration for | | • V | the following: | | | • F | | • Zn | | | | • Ni | | Practice Problems | | | Write the arrow electron configuration for the | • Ga | | following: | | | • Ti | Practice Problems | | | Write the standard electron configuration for | | • \$ | the following: | | | • Ca | | • Se | | | Practice Problems (Honors) | Practice Problem | |---|---| | YCa | Sample Problem Write the standard electron configuration for chromium. | | Sample Problem (Honors) Write the noble gas configuration for the following: Te | energy level. There are only exceptions that you need to memorize. | | The noble gas configuration only includes the before the element and the incomplete energy level. | Sublevels are the when they are or exactly This causes electrons to to different sublevels to make the atom more This does not happen until the | | When writing electron configurations for large atoms, it is quicker to use the | SiK | | • Al | • Fe | | • Ag | Write the noble gas configuration for the
following elements: | | • | Write the standard electron configuration for | |---|---| | | copper. | | • | Do not use | the e | exce | ption | for o | any | elem | nent | |---|------------|-------|------|-------|-------|-----|------|------| | | except | and | | • | | | | | #### • Section 5.2 Assessment - 1. What are the three rules for writing the electron configuration of elements? - 2. Explain why the actual electron configurations for some elements differ from those assigned using the Aufbau principle. - 3. Arrange the following sublevels in order of increasing energy: 2p, 4s, 3s, 3d, and 3p. - 4. Why does one electron in a potassium atom go into the fourth energy level instead of squeezing into the third energy level along with the eight already there? #### • Quantum Numbers (Honors) - _____ are a set of ___ numbers that can describe any _____. - The four numbers are represented by letters: - ___ is the _____(1, 2, 3, 4, 5, 6, 7) - ___ is the ____ (s = 0, p = 1, d = 2, f = 3, g = 4) - __ is the _____. ### • Sample Exercise (Honors) Write the quantum numbers for the following electrons: | | 1 st – | |---|---| | | 2 nd - | | | 3 rd - | | | | |) | Practice Problems (Honors) | |) | Write the quantum numbers for the following | | | electrons: | |) | the last electron in Mn | | • | Section 5.3 – Physics and the Quantum | |---|---------------------------------------| | | Mechanical Model | • The 6th electron There are 4 properties of a wave that you need to be able to identify. | • | The | is the | point of a wave. | |---|-----|--------|------------------| |---|-----|--------|------------------| | • | The | is the | point of a wave | |---|-----|--------|-----------------| |---|-----|--------|-----------------| | • | The. | the distance between the | |---|------|--------------------------| | | | and the | | • | The | is the distance between | | | | or two troughs. | | | | | ## • Sample Problem Calculate the wavelength of the yellow light emitted by a sodium lamp which has a frequency of 5.10 x 10¹⁴ Hz. | • | Pra | ctica | Prob | lam | |---|-----|-------|------|-----| | • | ГIU | ムニムモ | FIOU | œ | • What is the frequency of radiation with a wavelength of 5.00×10^{-8} m? | • | All electromagnetic waves travel at the same | |---|--| | | , so as wavelength | | | frequency | | • | The is the set of specific | | | that are emitted when an | | | element is electrified. | | • | The atomic emission spectra is for | | | each element just like for | | | humans. | | • | Atoms can emit when you add | | | heat,, or reaction energy | | • | The electrons start at | |---|--| | | When they absorb energy, they to | | | a higher energy level (excited state). | | • | They have to the energy to fall back | | | to, and they lose some | | | of that energy in the form of | | • | Atoms emit light when the electrons | | | to ground state. | | | | | • | Section 5.3 Assessment | | _ | | 1. How are wavelength and frequency of light related? 2. Describe the cause of atomic emission spectrum of an element.