Chapter 5 Outline **Electrons in Atoms**

LIECTIONS III AIOMS	to another.		
 Section 5.1 – Models of the Atom 	 A of energy is the amount of 		
The model of the atom did not explain how an atom can or the chemical properties of an atom.	energy required to move an from one to another.		
Niels Bohr studied the atom because it was the most	An electron must to jump to a energy level.		
 proposed that an electron is found only in specific paths, or, 	When an has jumped to a energy level, it is in an		
around the nucleus.	An electron must to fall to a		
Each possible electron in Bohr's model	energy level.		
has a The fixed energies	 When an is at the energy 		
an can have are called	level possible, it is at		
• The together as you move from the nucleus.	 model accurately describes the movement of an electron in the atom, but it cannot describe the movement of 		
 The also get higher in 	atoms.		
as you move farther from the	The of the atom is based on the mathematical		

• Electrons can _____ from one ____

of the location of	
using the Schrodinger equation.	
 The quantum mechanical model stills has , but the exact path or 	
orbit of the electron is	Bohr's Model Quantum Mechanical Model
Since the quantum mechanical model is based on the of finding an electron, then the are normally shaded with	
a edge.	 Each can be composed of multiple
An is a region of space in	
which there is a of	are assigned a number
finding an	from based on the on the periodic table.
Within the of an atomic orbital,	periodic rabie.
there is a chance of finding an electron.	 Each can be composed of multiple
The the shading of the orbital, the the chance of finding an	The are assigned a letter:
 4 Atomic Models 	·
Plum Pudding Model Rutherford's Model	Each can hold a maximum of
	·

 All have orbital and can hold a maximum of electrons. 	 All have orbitals and can hold a maximum of electrons. 			
The in front of s represents the, As the energy level, the of the stubleyel,	There are not enough g sublevels yet.	to fill in the		
the, of the s sublevel, but it can still only hold electrons. (Ex: 1s, 2s, 3s,	Sublevel # of Orbitals	# of Electrons		
etc.)	s 1	2		
• The has a shape.	р 3	6		
All have orbitals and can	d 5	10		
hold a maximum of electrons.	f 7	14		
The p sublevel has a or or	g 9	18		
shape. Each tear drop is referred to as a • All have orbitals and can hold a maximum of electrons.	 Section 5.1 Assessment Why did Rutherford's atomic not replaced? 	nodel need to be		
 The d sublevel has a shape (4 lobes) or 2 lobes and a All have orbitals and can hold a maximum of electrons. 	2. What was the basic new prop model of the atom?	osal in the Bohr		

3. What does the quantum mechanical model determine about electrons in atoms?	 principle states that electrons
acterrine about electrons in atoms?	occupy the energy levels first.
4. How do two sublevels of the same principle	The following is a diagram of the order of the
energy level differ from each other?	sublevels.
energy to ver amer herri ederi emer.	• states that an orbital
	can hold at most electrons.
5. How can electrons in an atom move from one	When electrons occupy the same
energy level to another?	they have spins.
energy lever to anomery	• states that electrons would
	rather be than together in a
6. How many orbitals are in the following	sublevel with multiple orbitals.
sublevels?	When you write the configuration
a. 3p	for an element, the first step is to determine the
·	number of by using the
b. 2s	Figure 21 by using the
c. 4p	·
d. 3d	For charged particles,
e. 4f	electrons. For charged particles,
 Section 5.2 – Electron Arrangement in Atoms 	electrons.
• The of an atom is	The are represented as
the arrangement of the	above the sublevel.
 There are 3 rules that govern the electron 	
configuration:	
	

• The are represented by	
There can only be one arrow and one	 When you write the electron configuration in
arrow in each	form, the number of
	in each sublevel is written as a
Sample Problems	You fill in the in the same order,
 Write the arrow electron configuration for the 	but after you the sublevels in
following:	order.
• B	• Ex: 1s, 2s, 2p, 3s, 3p, 4s, 3d
• N	Sample Problem
	 Write the standard electron configuration for
• V	the following:
	• F
• Zn	
	• Ni
Practice Problems	
Write the arrow electron configuration for the	• Ga
following:	
• Ti	Practice Problems
	 Write the standard electron configuration for
• \$	the following:
	• Ca
• Se	

 Practice Problems (Honors) 	Practice Problem
YCa	 Sample Problem Write the standard electron configuration for chromium.
 Sample Problem (Honors) Write the noble gas configuration for the following: Te 	 energy level. There are only exceptions that you need to memorize.
The noble gas configuration only includes the before the element and the incomplete energy level.	 Sublevels are the when they are or exactly This causes electrons to to different sublevels to make the atom more This does not happen until the
When writing electron configurations for large atoms, it is quicker to use the	SiK
• Al	• Fe
• Ag	 Write the noble gas configuration for the following elements:

•	Write the standard electron configuration for
	copper.

•	Do not use	the e	exce	ption	for o	any	elem	nent
	except	and		•				

• Section 5.2 Assessment

- 1. What are the three rules for writing the electron configuration of elements?
- 2. Explain why the actual electron configurations for some elements differ from those assigned using the Aufbau principle.
- 3. Arrange the following sublevels in order of increasing energy: 2p, 4s, 3s, 3d, and 3p.
- 4. Why does one electron in a potassium atom go into the fourth energy level instead of squeezing into the third energy level along with the eight already there?

• Quantum Numbers (Honors)

- _____ are a set of ___ numbers that can describe any _____.
- The four numbers are represented by letters:

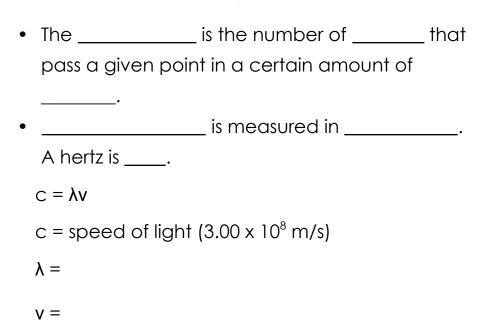
- ___ is the _____(1, 2, 3, 4, 5, 6, 7)
- ___ is the ____ (s = 0, p = 1, d = 2, f = 3, g = 4)
- __ is the _____.

• Sample Exercise (Honors)

 Write the quantum numbers for the following electrons:

	1 st –
	2 nd -
	3 rd -
)	Practice Problems (Honors)
)	Write the quantum numbers for the following
	electrons:
)	the last electron in Mn

•	Section 5.3 – Physics and the Quantum
	Mechanical Model


• The 6th electron

 There are 4 properties of a wave that you need to be able to identify.

•	The	is the	point of a wave.
---	-----	--------	------------------

•	The	is the	point of a wave
---	-----	--------	-----------------

•	The.	the distance between the
		and the
•	The	is the distance between
		or two troughs.

• Sample Problem

 Calculate the wavelength of the yellow light emitted by a sodium lamp which has a frequency of 5.10 x 10¹⁴ Hz.

•	Pra	ctica	Prob	lam
•	ГIU	ムニムモ	FIOU	œ

• What is the frequency of radiation with a wavelength of 5.00×10^{-8} m?

•	All electromagnetic waves travel at the same
	, so as wavelength
	frequency
•	The is the set of specific
	that are emitted when an
	element is electrified.
•	The atomic emission spectra is for
	each element just like for
	humans.
•	Atoms can emit when you add
	heat,, or reaction energy

•	The electrons start at
	When they absorb energy, they to
	a higher energy level (excited state).
•	They have to the energy to fall back
	to, and they lose some
	of that energy in the form of
•	Atoms emit light when the electrons
	to ground state.
•	Section 5.3 Assessment
_	

1. How are wavelength and frequency of light related?

2. Describe the cause of atomic emission spectrum of an element.