Philippe Chlenski | Mechanistic interpretability researcher

p@chlenski.com | (312) 545-3322 | Brooklyn, NY

Yale University | BA Mathematics & Philosophy

Education

Columbia University | PhD Computer Science Dissertation: Non-Euclidean representation learning with applications to metagenomics NSF Graduate Research Fellowship (GRFP) awarded in 2021

Deep Springs College | AA Liberal Arts

2014

2018

Experience

Meta | Research Scientist

Sep 2025-Present

Contribute mechanistic interpretability tooling to the open-source Captum library in the PyTorch ecosystem.

Apple | Al and Machine Learning Intern

Apr 2025-Aug 2025

- Developed machine learning models for time series forecasting, focusing on rare event accuracy.
- Collaborated with teams to apply models to business cases in supply, finance, sales, and operations.

Columbia University | Graduate Research Assistant | Advisor: Itsik Pe'er

Sep 2020-Aug 2025

- Adapted machine learning methods for non-Euclidean data using PyTorch.
- Built Python packages to model microbial growth rates in diverse data regimes.
- o Improved Bayesian phylogenetic inference algorithms using Sequential Monte Carlo.
- Planned and supervised 25 semester-long machine learning projects for 18 students.

ML Alignment and Theory Scholars | Scholar | Mentor: Neel Nanda, Google DeepMind

Nov 2023-Mar 2024

- Explored linear approximations for computing feature activations in sparse autoencoders.
- Conducted the first full study of transcoders, a sparse autoencoder variant for circuit analysis.

Uber | PhD Machine Learning Engineer Intern

May 2022-Aug 2022

- Developed a custom deep learning model for real-time fraud detection using Tensorflow.
- o Productionized model using Apache Spark and Docker, saving >\$30,000 weekly in refund losses.

Argonne National Laboratory | Researcher | Mentor: Ross Overbeek

Oct 2018-Aug 2020

- Extended RASTtk pipeline with deep learning models serving >100,000 users monthly.
- Developed Al pipeline to accelerate E. coli strain engineering for threonine production.

Selected Publications (Full list: Google Scholar)

- 1. Chlenski, Chu, Khan, Du, Moretti, and Pe'er. Mixed-curvature decision trees and random forests. ICML 2025.
- 2. Chlenski, Turok, Moretti, and Pe'er. Fast hyperboloid decision tree algorithms. ICLR 2024.
- 3. Chlenski*, Dunefsky*, and Nanda. Transcoders find interpretable LLM feature circuits. NeurIPS 2024.
- 4. Khan, Chlenski, and Pe'er. Hyperbolic genome embeddings. ICLR 2025.
- 5. Chen, **Chlenski**, Munyuza, Moretti, Naesseth, and Pe'er. <u>Variational combinatorial sequential Monte Carlo for Bayesian phylogenetics in hyperbolic space</u>. *AISTATS 2025*.
- 6. **Chlenski**, Hsu, and Pe'er. <u>MiSDEED: a synthetic data engine for microbiome study power analysis and study design</u>. *Bioinformatics Advances* 2022.
- 7. T Joseph, **P Chlenski**, A Litman, T Korem, and I Pe'er. <u>Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates</u>. *Genome Research* 2022.
- 8. J Davis et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Research 2020.
- 9. Hanke et al. Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning. Metabolic Engineering Communications 2023.

Teaching Experience

Columbia University: Instructor, Computing in Context; Head Teaching Fellow, Computational Genomics **Barnard College:** Instructor, Intro to Microbial Genomics (2x)