МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технол	огический университет имени Д.И.
Me	нделеева»

Факультет цифровых технологий и химического инжиниринга Кафедра информационных компьютерных технологий

Отчёт на тему:

«Поиск и анализ русскоязычных и англоязычных статей и патентов»

Учебный предмет: компьютерные и информационные технологии в науке и производстве

Выполнила: студентка группы МН-14 Спицына Ю.В..

Проверил: к.т.н., доцент Зубов Д.В.

Реферат

Отчет 9 с., 0 кн., 0 рис., 0 табл., 7 источн., 0 прил.

Лазерное фосфатное стекло.

Объектом исследования является изучение фосфатной матрицы лазерного стекла легированного эрбием.

Kлючевые слова: лазерное фосфатное стекло, легированное Er^{3+}

Цель работы — Изучение оптических свойств лазерного стекла на фосфатной основе.

В процессе работы проводился поиск имеющихся статей и патентов с целью изучения зависимости между составом и оптическими свойствами данного вида стекла, оценивалась актуальность данной тематики.

В результате исследования было выявлено, что на данный момент эта тема является актуальной, как на отечественных, так и на зарубежных интернет-библиотеках, и при поиске в патентных базах.

Содержание

Ped	еферат	2
Co,	одержание	3
Вв	ведение	4
1.	Русскоязычный поиск	5
2.	Англоязычный поиск	7
Сп	писок литературы	9

Введение

В сфере разработки составов лазерного стекла для достижения определенных оптических критериев, как и во многих других областях науки и техники, требуется постоянное обновление знаний и использование передовых технологий. Для этого критически важно иметь доступ к актуальной информации о последних научных исследованиях, разработках, новейших технологиях и патентах.

Однако объем научной информации, который ежегодно поступает в эту сферу, огромен. Без использования специализированных информационных систем практически невозможно эффективно и оперативно отбирать нужную информацию из этого огромного потока данных.

Поиск научных работ и патентов с помощью специализированных информационных систем значительно упрощает процесс для ученых, инженеров и других специалистов, обеспечивая быстрый доступ к актуальной информации, касающейся их профессиональной сферы. Это в свою очередь способствует повышению качества научных исследований и разработок, ускоряет процесс внедрения новых технологий и продуктов на рынок.

Кроме того, использование таких специализированных информационных систем способствует развитию научного сообщества, облегчая обмен опытом и знаниями между учеными и специалистами из различных стран и институтов.

Таким образом, важность поиска научных работ и патентов в специализированных информационных системах очевидна и критически важна для успешной научно-технической деятельности в современном мире, включая область лазерной резки.

В данном отчете представлены результаты поиска научных статей на тему "Лазерное фосфатное стекло". Для этого использовались ключевые слова "лазерное фосфатное стекло" и " легированное Er^{3+} " в библиотеках РИНЦ и ЭБС Лань, а также "laser phosphate glass", "doped Er^{3+} ", на сайтах Sciencedirect, Elsevier.

1. Русскоязычный поиск

Поиск осуществлялся на базе РИНЦ по теме: «Лазерное фосфатное стекло» по следующим ключевым словам:

- 1. Лазерное фосфатное стекло 2928 публикаций;
- 2. Лазерное фосфатное стекло легированное Er³⁺ 164 публикация;

В результате поиска были выбраны статьи и патенты, наиболее подходящие по аннотации:

- Худяков М. М. и др. Одномодовый Er-Yb волоконный усилитель с большим диаметром поля моды //8-й Российский семинар по волоконным лазерам. 2018. С. 65-66.
- Алексеев Н.Е., Гапонцев В.П., Жаботинский М.Е., Кравченко В.Б., Рудницкий Ю.П., Лазерные фосфатные стекла, Наука, Главная редакция физико-математической литературы, 1980
- Саркисов П.Д., Сигаев В.Н., Голубев Н.В., Савинков В.И., Оптические фосфатные стекла, RU 2426701 C1

Анализировались исследования других авторов, оценивались основные показатели их научной деятельности (количество опубликованных работ, цитирование, индекс Хирша и т. д.) и их важность для исследования. Также выбирались статьи, с наибольшим количеством цитирований по сравнению с другими статьями. Наиболее популярными авторами в выбранной тематике по найденным статьям стали Савинков

Виталий Иванович РХТУ им. Д.И. Менделеева Кафедра химической технологии стекла и ситаллов (Москва), Сигаев Владимир Николаевич РХТУ им. Д.И. Менделеева

Кафедра химической технологии стекла и ситаллов (Москва) и Патрикеев Алексей Павлович АО «Лыткаринский завод оптического стекла» (Лыткарино)).

Также был выполнен поиск патентов у авторов статей по данной теме:

- По автору Савинков В.И. было найдено всего 119 публикаций, из которых 19 патент, причем 8 из них относятся к лазерному фосфатному стеклу.
- По автору Сигаев В.Н. было найдено всего 715 публикаций и 68 патентов, из которых 6 относится к указанной теме.
- По автору Патрикеев А.П. было найдено 17 публикаций и 4 патентов, из которых 2 относятся к указанной теме.

Вывод

Проведя анализ поиска статей по выбранной теме, также патентов и других публикаций авторов, можно сделать вывод о том, что тема является достаточно узконаправленной и требует повышенного внимания в изучении.

2. Англоязычный поиск

Поиск осуществлялся на сайтах ScienceDirect, Elsevier по теме: «Laser phosphate glass» по следующим ключевым словам:

- 1. Laser phosphate glass: 96603 публикаций
- 2. Doped Er³⁺: 3786 публикаций

В результате поиска были выбраны статьи:

- Hu L. et al. Research and development of neodymium phosphate laser glass for high power laser application //Optical Materials. 2017. T.
 63. C. 213-220.
- Pugliese D. et al. Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers //Journal of Alloys and compounds. – 2016. – T. 657. – C. 678-683.
- Jiang S., Myers M., Peyghambarian N. Er3+ doped phosphate glasses and lasers //Journal of non-crystalline solids. 1998. T. 239. №. 1-3. C. 143-148.

В выборе статей учитывались квартили журналов и индекс Хирша авторов, например, в статье «Research and development of neodymium phosphate laser glass for high power laser application», которая была опубликована в журнале « Optical Materials» с квартилем Q1, индекс Хирша автора Ни, Lili равен 50. В другой работе: « Advances in high performance large aperture neodymium laser glasses», опубликованной также в журнале «High power laser and particle beams» с квартилем Q3 авторы Jiang S. имеет индекс Хирша 27.

Вывод

Исходя из результатов поиска можно сказать, что лазерная резка стекла является достаточно актуальной темой на зарубежных источниках. На сайте Яндекс Патенты при поиске патентов на тему: «Лазерное фосфатное стекло» было показано 1067 результатов, что также говорит о практической значимости данной тематики. Кроме того, если сравнивать количество статей, найденных на зарубежных и на русских источниках, то зарубежные авторы чаще пишут статьи и проводят исследования на эту тематику.

Список литературы

- 1. Худяков М. М. и др. Одномодовый Er-Yb волоконный усилитель с большим диаметром поля моды //8-й Российский семинар по волоконным лазерам. 2018. С. 65-66.
- 2. Алексеев Н.Е., Гапонцев В.П., Жаботинский М.Е., Кравченко В.Б., Рудницкий Ю.П., Лазерные фосфатные стекла, Наука, Главная редакция физико-математической литературы, 1980
- 3. Саркисов П.Д., Сигаев В.Н., Голубев Н.В., Савинков В.И., Оптические фосфатные стекла, RU 2426701 C1
- 4. Hu L. et al. Research and development of neodymium phosphate laser glass for high power laser application //Optical Materials. 2017. T. 63. C. 213-220.
- 5. Pugliese D. et al. Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers //Journal of Alloys and compounds. 2016. T. 657. C. 678-683.
- 6. Jiang S., Myers M., Peyghambarian N. Er3+ doped phosphate glasses and lasers //Journal of non-crystalline solids. 1998. T. 239. №. 1-3. C. 143-148.