
Heron Stateful Storage API Review

Overview​ 1

Current Status​ 1
Issues​ 2

Considerations​ 3

Proposal​ 3
Top Level Tasks​ 5
About Checkpoint Data​ 5
About Repartition Operation​ 5

For Stateful Grouping​ 6
Grouping Calculation​ 6
Stateful Storage Operations​ 7

For Stateless Grouping​ 8

Overview

This document is a review of current status of heron’s stateful storage interface as of April 2018.
It also contains issues and proposals of what needs to be done next.

The objective is to make the API stable so that logics above (like instances and checkpoint
managers) and below (like storage implementations) can proceed independently and are not
blocked by each other.

Repartitioning is being considered but not the focus or blocker of this doc.

Current Status
The overall design seems to be complete and reasonable:
https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edi
t and

https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edit
https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edit

https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/
edit#heading=h.d6uy2uxfs2xq

One key point is that stream manager is responsible for communicating with instances to
create checkpoint data and checkpoint manager is responsible for reading and writing stateful
storage. Therefore the checkpoint manager is the only component that has storage access. This
design hugely simplifies the stateful storage support.

Currently, there is IStatefulStorage interface and its implementations: LocalFileSystemStorage,
DlogStorage and HDFSStorage. However not all of them are production ready yet (for example
HDFSStorage is not used). (Also checkpoint cleanup logic is not working correctly with local
storage and needs to be revisited. It is because tmaster is issuing the cleanup event and send
to the checkpoint manager in container 0 which doesn’t have access to local storages in other
containers)

Issues
Here are few issues or TODOs in the current solution/implementation

●​ One major issue is that the currently API assumes one data blob for each instance, and
the API doesn’t have the grouping information. This causes unnecessary dependency
between checkpoint manager and stateful storage and it is a big issue for repartitioning
and it is a blocker for scale up and down stateful topologies.

https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/edit#heading=h.d6uy2uxfs2xq
https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/edit#heading=h.d6uy2uxfs2xq

●​ The current kafka spout implementation is using Manhattan to keep kafka offsets. This
logic might be refactored to use the general stateful storage interface later. The change
should be quite local and there is no structural issues here. We can consider using either
Manhattan or HDFS as backend.

Considerations
A few things are not ideal in the current structure:

●​ There is no difference between file-based and service-based storages currently. It could
be cleaner to add another layer of abstraction. One option is to provide a layer on top of
the file-based storage to support a key-value interface. File based storages normally
support appending and random access, while service-based storage normally don’t have
the features, but some of them may have transaction support on the other hand. We
don’t see the need for a layer like FileBasedStorage and ServiceBasedStorage so far,
but it could be considered to have interfaces like Appendable and RandomAccessible in
future.

●​ instance info (instance id, strmgr id) is used to reference/index Checkpoint data. This
design is making stateful storage depend topology logical plan and making repartitioning
harder. In theory, it could be cleaner to consider stateful storage purely as a low level
key-value store with metadata and the key is independent of any high level data like
instance info.

●​ Currently stateful data doesn’t have a version number. Users have to handle it by in
there own code. It could be better for heron to provide a field for users to use. But this
might be an overkill until the feature is supported. Extra discussion can be found in this
PR.

Proposal

To make StatefulStorage layer more independent, we are going to make the following two
changes:

●​ decouple it with the checkpoint manager layer by creating a new data structure as the
key. So the StatefulStorage interface should work more like a key-value storage and it
doesn’t rely on higher level data. Checkpoint manager should be responsible for
translating topology/instance information to storage key.

●​ Remove/decouple instance information from the key data structure. This could give us
more flexibilities when implementing the partitioning logic later. So the data structure
should have the following data:

https://github.com/apache/incubator-heron/pull/2891
https://github.com/apache/incubator-heron/pull/2891

○​ Chec
○​ Component name
○​ Instance index in the component (this is likely to be used by file based storage

only and ignored by kv store)
●​ Checkpoint data is a key-value map of [Partition id -> state data blob], where state data

blob is likely to be a key-value map.
●​ Offset of data blob for each partition needs to stored as well

Furthermore, component level metadata should be added (and the API). It is critical for the
repartitioning process to be added later. It should have the following data:

●​ Parallelism
●​ TBD

Top Level Tasks
1.​ Refactor IStatefulStorage and move Instance info out of the interface. Keep code

backward compatible
2.​ Add FileBasedStatefulStorage and ServiceBasedStatefulStorage. Keep code backward

compatible.
3.​ Complete HDFSStorage class (basic functionality) and test it. Stateful topologies should

work ok at this point.
4.​ Add in memory cache, file appending support, and other improvements.

About Checkpoint Data
Stateful Storage is used to save/load checkpoint data, so it is necessary to understand how
checkpoint data is organized.

Topology Checkpoint -> Component Checkpoint (Component Metadata) -> Instance
Checkpoint

Each of them contains the following information

●​ Topology checkpoint data
○​ Last successful checkpoint ID

●​ Component checkpoint (Component Metadata)
○​ Checkpoint ID
○​ Component Parallelism (for repartitioning)

●​ Instance checkpoint
○​ Checkpoint ID
○​ A single partition, or multiple partitions as a Map of partition ID -> State(key-value

pairs as ByteBuffer with serializer)
○​ Currently

■​ required string checkpoint_id = 1;
■​ required bytes state = 2; // Deserialize to State<Serializable,

Serializable> and stored to instanceState in Slave.

About Repartition Operation
Repartition operation is critical for stateful storage. There are a few options
(https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk
8/edit#heading=h.io67iyscchuh) but the two step hashing solution used in other stream
processing frameworks seems to be more straightforward.

Repartition operation works differently for stateful groupings (field grouping and custom
grouping) and stateless groupings(shuffle grouping).

For Stateful Grouping
In order to support repartition (scale up/down) for stateful grouping, another layer of partitioning
between tuples and instances is needed and it should be applied in both the grouping
calculation and storage operation in a consistent way.

Grouping Calculation
For each stateful component, instead of mapping to instances directly using the grouping logic,
tuples need to be mapped to partitions based on the logic and multiple partitions share a
deterministic owner instance. Then the partition information and the tuple are passed to the
instance together. Each partition has its own state object and instance(stateful bolts) should
choose the right state object to update for each tuple.

Basically the grouping logic is used to map each tuple to a virtual key first. Then the key is
consistently assigned to an instance. The hashing result doesn’t change when number of
instance changes as long as the key space is the same. The requirements for the keys are:

https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk8/edit#heading=h.io67iyscchuh
https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk8/edit#heading=h.io67iyscchuh

●​ The key space should be big enough so that the per instance traffic is more balanced.
●​ The key will be the upper bound of the parallelism of the component.
●​ The key space shouldn’t change when a topology starts running, otherwise the

checkpoint won’t be restored correctly.

The key space

Currently the greatest parallelism in our production environment is a few hundreds but it is
possible that there will be bigger topologies in future. Let’s assume the max to be 1000 for now.
The key space should be a few times of the number of instance to have a better load balance.
For example, if the factor is 2, which means there are 2000 partitions. When the number of
instance is 900 (it is worse if the number of instance is 1100), instance 0 ~ 199 would own 3
partitions and instance 200~899 would own 2. As the result, if the data is evenly distributed to
the partitions, instance 0 ~ 199 would each have (3 - 2) / 2 = 50% more traffic than the rest. If
the factor is 10, the traffic difference would be (12 - 11) /11 = 9.1%.

Assuming this factor to be 10, the key space would be 10 * 1000 = 10k. A factor of 100 might be
more preferable for big components. Larger key space would be helpful for better load
balancing, but could cause more overhead to maintain the map in memory and storage.

Assuming a tuple has been mapped to a partition, the equations between partition key (or
partition id) and instance should be:

number of partitions in each instance (floor)
Per_instance_partition_count = floor(num_of_partition / num_of_instance)
number of partitions that are not allocated to instances. These partitions will be allocated to
the instances at beginning, one overflow partition per instance.
overflow_partition_count = num_of_partition - per_instance_partition_count *
num_of_instance
// partitions on the left of first_non_over_flow_partition_id are in fatter instances
first_non_over_flow_partition_id = Extra_partition_count * (per_instance_partition_count + 1)

Target_instance(partition_id) =
 if partition_id < first_non_over_flow_partition_id:
 Partition_id / (Per_instance_partition_count + 1)
 Else:
 (Partition_id - first_non_over_flow_partition_id) / per_instance_partition_count

first_partition_id_for_instance(instance_id) =

 If instance_id < overflow_partition_count:
 Instance_id * (per_instance_partition_count + 1)
 Else:
 First_non_over_flow_partition_id + (instance_id - overflow_partition_count) *
per_instance_partition_count

last_partition_id_for_instance(instance_id) =
 If instance_id < overflow_partition_count:
 first_partition_id_for_instance(instance_id) + per_instance_partition_count
 Else:
 first_partition_id_for_instance(instance_id) + per_instance_partition_count - 1

Note that the equations and the numbers of partition and instance need to be consistent across
the whole topology.

Note that “/” is used in the equations instead of “%” which could be simpler to implement. In this
solution continuous partitions are assigned to each instance and it is friendly to stateful storage
implementations.

In normal running (no scale up/down), partitions of a single instance could be stored in a single
blob for better read and write efficiency. During repartitioning, the number of files to load for a
specific instance is a lot less in this way. The data size to be loaded would increase (expecting
X2 for scaling up and X2~3 for scaling down when parallelism change is not dramatic. Plus
storage implementation can also have the freedom to split blobs transparently by itself if data
size is really a concern), but scaling should be rare compare to checkpoint store and restore,
and loading data twice is likely to be preferable than one request per partition. Another
advantage is that choosing number of partitions is easier because fragmental data is not a
concern.

Stateful Storage Operations
The state partitions for a single instance can be stored in one blob instead one blob per
partition. This makes store and restore operations more efficient (less requests are needed).

If repartition happens (parallelism changed), stateful storage figures out the first and last
partition ids for the instance and uses the old parallelism information to figure out the blobs to
load and then pick the partitions.

Note that repartitioning of stateful grouping is supported only by distributed stateful storage.

For Stateless Grouping
Repartition for stateless grouping is a lot easier. No extra partitioning layer between tuples and
instances is needed.

Since it is ok for an instance to have a clean start, when adding more instances to a component,
The extra instances just need to initialize an empty state object and start running(see the figure
below).

When removing instances of a component (scaling down), there will be blobs left without
owners. These extra stateful blobs need to be loaded by the instances left (see the figure below)
and the instances need to merge the data with their own states.

	Heron Stateful Storage API Review
	Overview
	Current Status
	Issues

	Considerations
	Proposal
	Top Level Tasks
	About Checkpoint Data
	About Repartition Operation
	For Stateful Grouping
	Grouping Calculation
	The key space

	Stateful Storage Operations

	For Stateless Grouping

