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Overview 
 
This document is a review of current status of heron’s stateful storage interface as of April 2018. 
It also contains issues and proposals of what needs to be done next. 
 
The objective is to make the API stable so that logics above (like instances and checkpoint 
managers) and below (like storage implementations) can proceed independently and are not 
blocked by each other. 
 
Repartitioning is being considered but not the focus or blocker of this doc. 
 

Current Status 
The overall design seems to be complete and reasonable: 
https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edi
t and 

https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edit
https://docs.google.com/document/d/1pNuE77diSrYHb7vHPuPO3DZqYdcxrhywH_f7loVryCI/edit


https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/
edit#heading=h.d6uy2uxfs2xq 
 
One key point is that stream manager is responsible for communicating with instances to 
create checkpoint data and checkpoint manager is responsible for reading and writing stateful 
storage. Therefore the checkpoint manager is the only component that has storage access. This 
design hugely simplifies the stateful storage support. 
 
 
Currently, there is IStatefulStorage interface and its implementations: LocalFileSystemStorage, 
DlogStorage and HDFSStorage. However not all of them are production ready yet (for example 
HDFSStorage is not used). (Also checkpoint cleanup logic is not working correctly with local 
storage and needs to be revisited. It is because tmaster is issuing the cleanup event and send 
to the checkpoint manager in container 0 which doesn’t have access to local storages in other 
containers) 

 

Issues 
Here are few issues or TODOs in the current solution/implementation 

●​ One major issue is that the currently API assumes one data blob for each instance, and 
the API doesn’t have the grouping information. This causes unnecessary dependency 
between checkpoint manager and stateful storage and it is a big issue for repartitioning 
and it is a blocker for scale up and down stateful topologies. 

https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/edit#heading=h.d6uy2uxfs2xq
https://docs.google.com/document/d/1YDFNvLTX6Sg3WDrNFKiWLaJvuEtK4eyxEaA0w9cVlG4/edit#heading=h.d6uy2uxfs2xq


●​ The current kafka spout implementation is using Manhattan to keep kafka offsets. This 
logic might be refactored to use the general stateful storage interface later. The change 
should be quite local and there is no structural issues here. We can consider using either 
Manhattan or HDFS as backend. 

 

Considerations 
A few things are not ideal in the current structure: 

●​ There is no difference between file-based and service-based storages currently. It could 
be cleaner to add another layer of abstraction. One option is to provide a layer on top of 
the file-based storage to support a key-value interface. File based storages normally 
support appending and random access, while service-based storage normally don’t have 
the features, but some of them may have transaction support on the other hand. We 
don’t see the need for a layer like FileBasedStorage and ServiceBasedStorage so far, 
but it could be considered to have interfaces like Appendable and RandomAccessible in 
future. 

●​ instance info (instance id, strmgr id) is used to reference/index Checkpoint data. This 
design is making stateful storage depend topology logical plan and making repartitioning 
harder. In theory, it could be cleaner to consider stateful storage purely as a low level 
key-value store with metadata and the key is independent of any high level data like 
instance info. 

●​ Currently stateful data doesn’t have a version number. Users have to handle it by in 
there own code. It could be better for heron to provide a field for users to use. But this 
might be an overkill until  the feature is supported. Extra discussion can be found in this 
PR. 

 
 
 

Proposal 
 
To make StatefulStorage layer more independent, we are going to make the following two 
changes: 

●​ decouple it with the checkpoint manager layer by creating a new data structure as the 
key. So the StatefulStorage interface should work more like a key-value storage and it 
doesn’t rely on higher level data. Checkpoint manager should be responsible for 
translating topology/instance information to storage key. 

●​ Remove/decouple instance information from the key data structure. This could give us 
more flexibilities when implementing the partitioning logic later. So the data structure 
should have the following data: 

https://github.com/apache/incubator-heron/pull/2891
https://github.com/apache/incubator-heron/pull/2891


○​ Chec 
○​ Component name 
○​ Instance index in the component (this is likely to be used by file based storage 

only and ignored by kv store) 
●​ Checkpoint data is a key-value map of [Partition id -> state data blob], where state data 

blob is likely to be a key-value map. 
●​ Offset of data blob for each partition needs to stored as well 

 
Furthermore, component level metadata should be added (and the API). It is critical for the 
repartitioning process to be added later. It should have the following data: 

●​ Parallelism 
●​ TBD 

 



 

Top Level Tasks 
1.​ Refactor IStatefulStorage and move Instance info out of the interface. Keep code 

backward compatible 
2.​ Add FileBasedStatefulStorage and ServiceBasedStatefulStorage. Keep code backward 

compatible. 
3.​ Complete HDFSStorage class (basic functionality) and test it. Stateful topologies should 

work ok at this point. 
4.​ Add in memory cache, file appending support, and other improvements. 

 
 
 

About Checkpoint Data 
Stateful Storage is used to save/load checkpoint data, so it is necessary to understand how 
checkpoint data is organized. 
 
Topology Checkpoint -> Component Checkpoint (Component Metadata)  -> Instance  
Checkpoint 
 
Each of them contains the following information 

●​ Topology checkpoint data 
○​ Last successful checkpoint ID 

●​ Component checkpoint (Component Metadata) 
○​ Checkpoint ID 
○​ Component Parallelism (for repartitioning) 

●​ Instance checkpoint 
○​ Checkpoint ID 
○​ A single partition, or multiple partitions as a Map of partition ID -> State(key-value 

pairs as ByteBuffer with serializer) 
○​ Currently 

■​ required string checkpoint_id = 1; 
■​ required bytes state = 2;  // Deserialize to State<Serializable, 

Serializable> and stored to instanceState in Slave. 
 
 
 



About Repartition Operation 
Repartition operation is critical for stateful storage. There are a few options 
(https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk
8/edit#heading=h.io67iyscchuh) but the two step hashing solution used in other stream 
processing frameworks seems to be more straightforward. 
 
Repartition operation works differently for stateful groupings (field grouping and custom 
grouping) and stateless groupings(shuffle grouping). 
 

For Stateful Grouping 
In order to support repartition (scale up/down) for stateful grouping, another layer of partitioning 
between tuples and instances is needed and it should be applied in both the grouping 
calculation and storage operation in a consistent way. 
 

Grouping Calculation 
For each stateful component, instead of mapping to instances directly using the grouping logic, 
tuples need to be mapped to partitions based on the logic and multiple partitions share a 
deterministic owner instance. Then the partition information and the tuple are passed to the 
instance together. Each partition has its own state object and instance(stateful bolts) should 
choose the right state object to update for each tuple. 
 

 
 
Basically the grouping logic is used to map each tuple to a virtual key first. Then the key is 
consistently assigned to an instance. The hashing result doesn’t change when number of 
instance changes as long as the key space is the same. The requirements for the keys are: 

https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk8/edit#heading=h.io67iyscchuh
https://docs.google.com/document/d/1X0pS9uwevn16nYYqrGjEvWQMWQLwti7Q0hmW6lmgyk8/edit#heading=h.io67iyscchuh


●​ The key space should be big enough so that the per instance traffic is more balanced. 
●​ The key will be the upper bound of the parallelism of the component. 
●​ The key space shouldn’t change when a topology starts running, otherwise the 

checkpoint won’t be restored correctly. 
 

The key space 

Currently the greatest parallelism in our production environment is a few hundreds but it is 
possible that there will be bigger topologies in future. Let’s assume the max to be 1000 for now. 
The key space should be a few times of the number of instance to have a better load balance. 
For example, if the factor is 2, which means there are 2000 partitions. When the number of 
instance is 900 (it is worse if the number of instance is 1100), instance 0 ~ 199 would own 3 
partitions and instance 200~899 would own 2. As the result, if the data is evenly distributed to 
the partitions, instance 0 ~ 199 would each have (3 - 2) / 2 = 50% more traffic than the rest. If 
the factor is 10, the traffic difference would be (12 - 11) /11 = 9.1%. 
 
Assuming this factor to be 10, the key space would be 10 * 1000 = 10k. A factor of 100 might be 
more preferable for big components. Larger key space would be helpful for better load 
balancing, but could cause more overhead to maintain the map in memory and storage. 
 
 
Assuming a tuple has been mapped to a partition, the equations between partition key (or 
partition id) and instance should be: 
 
 

# number of partitions in each instance (floor) 
Per_instance_partition_count = floor(num_of_partition / num_of_instance) 
# number of partitions that are not allocated to instances. These partitions will be allocated to 
the instances at beginning, one overflow partition per instance. 
overflow_partition_count = num_of_partition - per_instance_partition_count * 
num_of_instance 
// partitions on the left of first_non_over_flow_partition_id are in fatter instances 
first_non_over_flow_partition_id = Extra_partition_count * (per_instance_partition_count + 1) 
 
Target_instance(partition_id) = 
  if partition_id < first_non_over_flow_partition_id: 
    Partition_id / (Per_instance_partition_count + 1) 
  Else: 
    (Partition_id - first_non_over_flow_partition_id) / per_instance_partition_count 
 
   
first_partition_id_for_instance(instance_id) = 



  If instance_id < overflow_partition_count: 
    Instance_id * (per_instance_partition_count + 1) 
  Else: 
    First_non_over_flow_partition_id + (instance_id - overflow_partition_count) * 
per_instance_partition_count 
 
last_partition_id_for_instance(instance_id) = 
  If instance_id < overflow_partition_count: 
    first_partition_id_for_instance(instance_id) + per_instance_partition_count 
  Else: 
    first_partition_id_for_instance(instance_id) + per_instance_partition_count - 1 

 
 
 

 
 

Note that the equations and the numbers of partition and instance need to be consistent across 
the whole topology. 
 
Note that “/” is used in the equations instead of “%” which could be simpler to implement. In this 
solution continuous partitions are assigned to each instance and it is friendly to stateful storage 
implementations. 
 
In normal running (no scale up/down), partitions of a single instance could be stored in a single 
blob for better read and write efficiency. During repartitioning, the number of files to load for a 
specific instance is a lot less in this way. The data size to be loaded would increase (expecting 
X2 for scaling up and X2~3 for scaling down when parallelism change is not dramatic. Plus 
storage implementation can also have the freedom to split blobs transparently by itself if data 
size is really a concern), but scaling should be rare compare to checkpoint store and restore, 
and loading data twice is likely to be preferable than one request per partition. Another 
advantage is that choosing number of partitions is easier because fragmental data is not a 
concern. 
 



Stateful Storage Operations 
The state partitions for a single instance can be stored in one blob instead one blob per 
partition. This makes store and restore operations more efficient (less requests are needed). 
 
If repartition happens (parallelism changed), stateful storage figures out the first and last 
partition ids for the instance and uses the old parallelism information to figure out the blobs to 
load and then pick the partitions. 
 

 
 

 
Note that repartitioning of stateful grouping is supported only by distributed stateful storage. 
 

For Stateless Grouping 
Repartition for stateless grouping is a lot easier. No extra partitioning layer between tuples and 
instances is needed. 
 
Since it is ok for an instance to have a clean start, when adding more instances to a component, 
The extra instances just need to initialize an empty state object and start running(see the figure 
below). 
 



 
 

When removing instances of a component (scaling down), there will be blobs left without 
owners. These extra stateful blobs need to be loaded by the instances left (see the figure below) 
and the instances need to merge the data with their own states. 
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