
The Electric Car User Interface - frontend.py
A Breakdown

What does the user interface look like?

The user interface is divided into two main sections. The first section allows the user to
set the car's speed as a percentage, ranging from 0% to 100%. A slider is provided for
making large adjustments, while buttons on either side allow for finer, incremental
changes. The second section controls the duration the car will travel at the selected
speed. This time value can be set anywhere between 0 and 15 seconds, using the same
combination of a slider for broad changes and buttons for small adjustments.

How was this made?
The entire UI was coded with the help of the Tkinter library. At the suggestion of Sheel I
explored the Tkinter docs and taught myself how to use it to code this simple interface.
The website I used to help with learning Tkinter was https://tkdocs.com/ so a big thanks
to the lovely people who wrote the docs.

https://tkdocs.com/

A quick explanation of Tkinter
Tkinter is a library that allows users to build UIs. Tkinter can be broken down into a few
key commands.

●​ Control Commands
○​ These commands allow coders to control large scale things such as overall

positioning of objects and general stylistic choices such as background
color.

●​ Create commands

○​ These commands create specific things on the screen such as an image,
table, button, text, or slider.

●​ Place commands
○​ These commands almost always follow a create command. These

commands tell the computer where to place the objects it has created.
Without this command, objects created do not appear on the screen
because the computer doesn’t know where to put them.

Pack vs. Grid
In Tkinter there exist two main commands for placing objects--Pack and Grid. Pack uses
relative locations around the screen to decide where to place objects such as left, right,
up, down, and center. Meanwhile, Grid uses a series of columns and rows and then
places each object inside a specific column and row. Both can be used, but Grid is newer
than Pack. Personally, I prefer Grid since it allows the user better control over precise
object placement and in this project will be using it.

A breakdown of the layout

What do these boxes mean?
When using the Grid system in Tkinter, everything is positioned using rows and columns.
Because of this, it’s usually easier to divide large areas into smaller sections that nest
neatly within each other. In the diagram above, I could have placed all the widgets in a
single frame—similar to a table layout—but doing so would have required managing eight
rows and four columns in one place, which gets confusing fast. Instead, I broke the
interface into four main sections, each enclosed in its own frame (highlighted in red).
Each of these red-framed sections contains its own internal frame (highlighted in green),
with its own simpler grid layout. For example, the "Speed" and "Time" sections each have
their own grid of rows and columns for the buttons, sliders, and labels. This approach
makes the layout much more manageable and helps keep the code organized and easier
to debug.

Problems
Overall, this project went quite smoothly, but I did encounter a few hiccups along the
way. One of the biggest issues was setting up the columns and rows in Tkinter.
According to the documentation, the first column and row are labeled as one. However,
in practice, they actually start at zero. The documentation didn’t make it clear that starting
at one was just a stylistic choice. As a result, I initially added an extra column and row,
which led to a second problem: getting the application to resize dynamically. I wanted
dynamic resizing because I didn’t know the exact screen dimensions where the app
would be displayed, and I wanted it to fit the screen perfectly. However, the extra column
and row threw off the resizing behavior. Eventually, I asked an AI assistant why the layout
wasn’t resizing as expected, and it helped me identify the issue. After that, I simply
adjusted the numbers, but it was a bit frustrating that such a small detail caused so much
trouble.

The code itself with explanations for what things do
#The first thing I do is import tkinter

from tkinter import *

from tkinter import ttk

import time

#These imports are for the backend so don’t worry about them

#import board

#import busio

#from adafruit_mcp4725 import MCP4725

#import RPi.GPIO as GPIO

#import backend

#These are a few initial configurations for the project, such as the size

of the window and the title of the application.

root = Tk()

root.title('Electric Car Controller')

root.geometry("800x600")

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

#The application keeps track of a couple of numbers that the user inputs,

so that's these.

spe_total = StringVar(value='0')

time_total = StringVar(value='0')

start_op = StringVar(value='')

#i2c, dac = backend.initialize()

#This is the function the application uses to decrease the numbers on

screen. It’s a simple logic function that subtracts the number on screen

by one and then updates the screen.

def sub(total, min_val, change):

 try:

 value = int(total.get())

 if value > min_val:

 total.set(value - change)

 except ValueError:

 pass

#This function does the exact same thing as the function above except it

adds numbers.

def add(total, max_val, change):

 try:

 value = int(total.get())

 if value < max_val:

 total.set(value + change)

 except ValueError:

 pass

#This is a temporary function for the start button when the backend is not

connected. All it does is prevent the user from clicking the button more

than once and activating the start function many times over.

def start():

 start_button.config(state='disabled')

 start_button.config(state='normal')

#This function resets the values incase they become broken

def reset():

 spe_total.set('0')

 time_total.set('0')

#This function looks complicated, but all it really does is generate a

number with two buttons on either side. I did it like this so that I could

easily create one version for speed and one for time without repeating

myself. Basically it makes all the green boxes except for the slider.

def layout(parent, title, total, unit, min_val, max_val, change):

 ttk.Label(parent, text=title, anchor='center').grid(column=2, row=0,

sticky='nsew', padx=5, pady=5)

 ttk.Button(parent, text='Decrease', command=lambda: sub(total,

min_val, change)).grid(column=0, row=1, sticky='nsew', padx=5, pady=5)

 ttk.Button(parent, text='Increase', command=lambda: add(total,

max_val, change)).grid(column=5, row=1, sticky='nsew', padx=5, pady=5)

 ttk.Label(parent, textvariable=total, anchor='e').grid(column=2,

row=2, sticky='nsew', padx=0, pady=5)

 ttk.Label(parent, text=unit, anchor='w').grid(column=3, row=2,

sticky='nsew', padx=0, pady=5)

#This function defines the number of rows and columns for a frame. In

Tkinter in order to grid something it must be placed inside a frame with a

specified number of columns and rows. I made this function to make it

quicker for me to set the columns and rows for frames.

def config(parent, col_num, row_num, col_weight, row_weight):

 for i in range(col_num):

 parent.columnconfigure(i, weight=col_weight)

 for i in range(row_num):

 parent.rowconfigure(i, weight=row_weight)

#This creates the initial window

content = ttk.Frame(root)

content.grid(column=0, row=0, sticky='nsew')

content.columnconfigure(0, weight=1)

content.rowconfigure(0, weight=1)

#This creates a frame inside that window to place the red boxes defined in

the diagram.

mainframe = ttk.Frame(content, borderwidth=5, relief='ridge')

mainframe.grid(column=0, row=0, sticky='nsew')

mainframe.grid_propagate(False)

#This tells that frame how many columns and rows to create.

config(mainframe, 1, 4, 1, 1)

#This creates the four red boxes.

title_frame = ttk.Frame(mainframe, borderwidth=5)

topframe = ttk.Frame(mainframe, borderwidth=5, relief='ridge')

bottomframe = ttk.Frame(mainframe, borderwidth=5, relief='ridge')

begin = ttk.Frame(mainframe, borderwidth=5)

#This places the four red boxes in the main frame.

title_frame.grid(column=0, row=0, sticky='nsew', padx=5, pady=5)

topframe.grid(column=0, row=1, sticky='nsew', padx=5, pady=5)

bottomframe.grid(column=0, row=2, sticky='nsew', padx=5, pady=5)

begin.grid(column=0, row=3, sticky='nsew', padx=5, pady=5)

#This tells each of those boxes how many columns and rows to have for all

the text and buttons.

config(topframe, 6, 3, 1, 1)

config(bottomframe, 6, 3, 1, 1)

config(title_frame, 5, 1, 1, 1)

config(begin, 3, 1, 1, 1)

#This is testing function from when I was developing this

def test():

 start_button.config(state='disabled')

 print('Button disabled')

 time.sleep(5)

#This links the front to the back end. Don’t worry about it.

def wrapper(dac, i2c, spe_total, time_total):

 pass

start_button.config(state='disabled')

output_voltage = ((3 - 2.5) * (int(spe_total.get()) / 100)) + 2.5

backend.volt(dac=dac, i2c=i2c, output_voltage=output_voltage,

duration=int(time_total.get()))

time.sleep(int(time_total.get()))

dac.raw_value = 0

start_button.config(state='normal')

#This creates the title and the sliders for time and speed.

title = ttk.Label(title_frame, text="Lucy's Electric Car Controller",

anchor='center').grid(column=2, row=0, sticky='nsew')

res = ttk.Button(topframe, text='Close program', command=lambda:

backend.reset(dac, i2c))

res.grid(column=0, row=0, sticky='nsew', padx=20, pady=20)

s_spe = Scale(topframe, borderwidth=10, resolution=5, variable=spe_total,

showvalue=0, from_ = 0, to = 100, orient = HORIZONTAL)

s_spe.grid(column=1, row=1, columnspan=3, sticky='nsew', padx=5, pady=5)

s_time = Scale(bottomframe, borderwidth=10, variable=time_total,

resolution=1, showvalue=0, from_ = 0, to = 15, orient = HORIZONTAL)

s_time.grid(column=1, row=1, columnspan=3, sticky='nsew', padx=5, pady=5)

#This creates the start button and the radio buttons at the bottom.

start_button = ttk.Button(begin, text='Start Car', command=lambda:

backend.volt(dac=dac, i2c=i2c, output_voltage=3, duration=3))

start_button = ttk.Button(begin, text='Start Car', command=lambda:

wrapper(dac=dac, i2c=i2c, spe_total=spe_total, time_total=time_total))

start_button.grid(column=0, row=0, sticky='nsew', padx=10, pady=1)

speed_button = ttk.Radiobutton(begin, text="Speed", variable=start_op,

value='speed')

distance_button = ttk.Radiobutton(begin, text="Time", variable=start_op,

value='time')

#speed_button.grid(column=1, row=0, sticky='nsew', padx=5, pady=1)

#distance_button.grid(column=2, row=0, sticky='nsew', padx=5, pady=1)

#This calls the layout function defined at the top which creates the

values, increase and decrease buttons, and displays the values of each.

layout(topframe, 'Speed', spe_total, '%', 0, 100, 1)

layout(bottomframe, 'Time', time_total, 's', 0, 15, 1)

#This just tells tkinter to start. It's like calling main().

root.mainloop()

Access this all at https://github.com/Sheel2007/EVCar

https://github.com/Sheel2007/EVCar

