Stop the Superspreading to Stop the Pandemic

Superspreading events occur when a large number of people are infected at the same event.

- Superspreading drives the SARS-CoV-2 pandemic.
- Aerosol transmission drives superspreading.
- Distancing, proper ventilation and filtration prevent aerosol transmission.
- By stopping the superspreading we can reopen the economy and public life.

Superspreading Drives the Pandemic

- Most infected people don't infect anybody else.
- Those that do, usually only infect one or a few others.
- But a very small number of people infect a lot of others.
- This typically happens at so-called superspreading events.
- People infected at superspreading events may go on to infect more people.
- So if we stop these superspreading events, we prevent a large number of infections.
- Stopping superspreading stops the uncontrollable spread of the virus.

Where Superspreading Events Happen

- Nursing homes
- Hospitals
- Rehabilitation centers
- Prisons
- Worker dormitories
- Family gatherings
- Meat processing plants
- Ships
- Parties
- Weddings

Common Features of Superspreading Settings

- Lot of people
- Close together
- Indoors
- Prolonged period of time
- Poor Ventilation
- Poor Filtration

Additional Risk Factors

- Laughing, Talking, Singing, Shouting
- Refrigeration

Aerosols Drive Superspreading

SARS-CoV-2 can be transmitted through surfaces, large droplets and aerosols.

What Are Aerosols

- Aerosols are very small particles made of saliva or respiratory fluid.
- We emit aerosols when we breathe, talk, laugh, cough, sneeze, sing.
- Aerosols linger in the air for minutes or even hours, and travel across a space
- Aerosols of infected people contain infectious virus particles
- When you breathe in these infectious aerosols you may get infected
- Because aerosols linger and travel, one person can infect many others in a space, even at a distance
- Infected people start emitting infectious aerosols before they start showing symptoms

Aerosol Risk Factors

- Dose: The more infectious aerosols you breathe in the higher your risk of infection and severe disease
- **Proximity:** The closer you are to an infected person the higher the concentration of aerosols in the air you breathe
- **Duration:** The longer you are in a space with infectious aerosols the more aerosols you breathe in
- Vocalizing: When you talk, laugh, shout or sing you emit aerosols at a higher rate
- Refrigeration: Infectious aerosols survive longer in refrigerated air

Stop Superspreading

We can greatly reduce the risk of superspreading events by reducing the concentration of infectious aerosols in the air. There are 3 steps to this:

Prevention

Reduce the number of infectious aerosols that enter a space:

- Stay Home: People with symptoms or confirmed infections should stay home. People
 who were in recent close contact with infected people should stay aso stay home and
 consider getting tested.
- Masks: Masks may help block aerosols so that fewer exhaled aerosols enter a space.

- **Fewer People:** Fewer people in a space means fewer exhaled aerosols. Fewer people also means it is possible to maintain greater distances between people.
- **Duration:** In spaces with high risk factors, don't stay long.

Ventilation

Bring in outside air to lower the concentration of infectious aerosols in the air:

- Open Doors and Windows: To let more outside air in.
- **Fans:** Putting fans in windows can help air flow as long as they don't blow air directly from one person to another.
- HVAC: In spaces with air conditioning increase an HVAC system's outdoor air supply
- **CO2 Meters:** Use CO2 detectors as a proxy to determine if a space needs more ventilation: If >600-800 PPM more ventilation is needed.

Filtration

Remove virus particles from the air:

- **HVAC Filters:** When possible, equip HVAC systems with MERV13 filters.
- **Air Purifiers:** Use portable air purifiers with HEPA filters (do NOT use purifiers that generate ozone).

Sources

Superspreading Fuels the Pandemic

Miller, Danielle, et al. "Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel." medRxiv (2020).

medRxiv 2020.05.21.20104521; doi: https://doi.org/10.1101/2020.05.21.20104521

Dillon Adam, Peng Wu, Jessica Wong et al. Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong, 21 May 2020, PREPRINT (Version 1) available at Research Square https://www.researchsquare.com/article/rs-29548/v1

Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Abbott S et al. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China [version 3; peer review: 2 approved]. Wellcome Open Res 2020, 5:67 https://doi.org/10.12688/wellcomeopenres.15842.3

Goyal, Ashish, et al. "Wrong person, place and time: viral load and contact network structure predict SARS-CoV-2 transmission and super-spreading events." medRxiv (2020). doi: https://doi.org/10.1101/2020.08.07.20169920

Laxminarayan, Ramanan, et al. "Epidemiology and transmission dynamics of COVID-19 in two Indian states." medRxiv (2020).

https://doi.org/10.1101/2020.07.14.20153643

Lemieux, Jacob, et al. "Phylogenetic analysis of SARS-CoV-2 in the Boston area highlights the role of recurrent importation and superspreading events." medRxiv (2020). https://doi.org/10.1101/2020.08.23.20178236

Dillon C. Adam and Benjamin J. Cowling, 'Just Stop the Superspreading.' *New York Times* June 2, 2020.

https://web.archive.org/web/20200829063011/https://www.nytimes.com/2020/06/02/opinion/coronavirus-superspreaders.html

Katherine Harmon Courage, 'How superspreading is fueling the pandemic — and how we can stop it'

https://www.vox.com/21296067/coronavirus-covid-symptoms-superspreaders-superspreading-contagious-bars-restaurants

Where Superspreading Events Happen

Leclerc QJ, Fuller NM, Knight LE et al. What settings have been linked to SARS-CoV-2 transmission clusters? [version 2; peer review: 2 approved] Wellcome Open Res 2020, 5:83 (https://doi.org/10.12688/wellcomeopenres.15889.2)

Swinkels, K. (2020). Covid-19 Superspreading Events Database. Retrieved from https://medium.com/@codecodekoen/covid-19-superspreading-events-database-4c0a7aa2342b

Lakha, F, Rudge JW, Holt H (2020). Rapid synthesis of evidence on settings which have been associated with SARS-CoV-2 transmission clusters. This work was carried out in collaboration with the World Health Organization Western Pacific Regional Office (WPRO) https://superspreadingdatabase.github.io/Evidence on clusters final.pdf

Aerosols Drive Superspreading

Lidia Morawska, Donald K Milton, It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19), Clinical Infectious Diseases, ciaa939, https://doi.org/10.1093/cid/ciaa939

Li, Yuguo, et al. "Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant." medRxiv (2020). https://doi.org/10.1101/2020.04.16.20067728

Jose-Luis Jimenez, 'COVID-19 transmission patterns only seem explainable by aerosols' https://docs.google.com/document/d/1Kx4Mka nORa8LIEwziRYZxOX0J8 fFfgnt-9TBjxusc/edit

Jose-Luis Jimenez, 'COVID-19 Data Dives: Why Arguments Against SARS-CoV-2 Aerosol Transmission Don't Hold Water'

https://www.medscape.com/viewarticle/934837?src=uc_mscpedt&faf=1#vp_1

Joshua D. Rabinowitz and Caroline R. Bartman, 'These Coronavirus Exposures Might Be the Most Dangerous.' *New York Times* April 1 2020.

https://web.archive.org/web/20200815122427/https://www.nytimes.com/2020/04/01/opinion/coronavirus-viral-dose.html

Daniela Hernandez, Sarah Toy and Betsy McKay, 'How Exactly Do You Catch Covid-19? There Is a Growing Consensus.' *Wall Street Journal* June 16 2020

https://www.wsj.com/articles/how-exactly-do-you-catch-covid-19-there-is-a-growing-consensus-11592317650

Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020;3(6):e2011834. doi:10.1001/jamanetworkopen.2020.11834

Stop Superspreading

Caitlin McCabe, 'Key to Preventing Covid-19 Indoors: Ventilation.' *Wall Street Journal* September 1 2020.

https://www.wsj.com/articles/key-to-preventing-covid-19-indoors-ventilation-11598953607

<u>Aerosol Transmission Estimator:</u> Calculates COVID-19 infection risk for a number of basic situations: college classrooms, choirs, taking a bus, being outdoors, participating in demonstrations

COVID-19 Indoor Safety Calculator App: Calculates indoor transmission risk for various settings

<u>Humidity Calculator:</u> Uses temperature and relative humidity to calculate 'specific humidity' which is an indicator of how favorable conditions are for the virus to spread