Citation to review of optomechanics

  1. Quantum signatures in quadratic optomechanics, J.D.P. Machado, R.J. Slooter, Ya. M. Blanter, arXiv:1808.01658
  2. Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane, Rozenn Diehl, Erik Hebestreit, René Reimann, Felix Tebbenjohanns, Martin Frimmer, and Lukas Novotny, Phys. Rev. A 98, 013851 – Published 30 July 2018
  3. Xingyan Chen, Zhang-qi Yin*, “High-precision gravimeter based on a nano-mechanical resonator hybrid with a electron spin”, arXiv:1807.05671.
  4. Ke-Wen Xiao, Lei-Ming Zhou, Zhangqi Yin, and Nan Zhao, “Detection of Magnetic Field Gradient and Single Spin using Optically Levitated Nano-Particle in Vacuum”,  Commun. Theor. Phys. 70, 97 (2018).
  5. Hebestreit E, Frimmer M, Reimann R, et al. Measuring gravity with optically levitated nanoparticles[C]//Novel Optical Materials and Applications. Optical Society of America, 2018: NoTu4J. 2.
  6. Nonequilibrium information erasure below kTln2, Michael Konopik, Alexander Friedenberger, Nikolai Kiesel, Eric Lutz, arXiv:1806.01034
  7. Macroscopic quantum states: Measures, fragility, and implementations, Florian Fröwis, Pavel Sekatski, Wolfgang Dür, Nicolas Gisin, and Nicolas Sangouard, Rev. Mod. Phys. 90, 025004 – Published 31 May 2018
  8. Current state of the art in small mass and force metrology within the International System of Units, Gordon A Shaw, Measurement Science and Technology, Volume 29, Number 7, in pressing
  9. Title: Employing coupled cavities to increase the cooling rate of a levitated nanosphere in the resolved sideband regime, Authors: Mohammad Ali Abbassi,Khashayar Mehrany, Journal of the Optical Society of America, in pressing.
  10. Ke-wen Xiao, Anda Xiong, Nan Zhao, Zhang-qi Yin*, “Synthetic cooling translational mode of an optically trapped nanoparticle through librational mode”, arXiv:1805.02469.
  11. Levitated Nanoparticles for Microscopic Thermodynamics—A Review, Jan Gieseler and James Millen, Entropy 20, 326 (2018).
  12. Surface and Interfacial Forces 2e, Author(s):Prof Hans-Jürgen Butt, Dr Michael Kappl, First published:10 April 2018, Online ISBN:9783527804351, DOI:10.1002/9783527804351© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA
  13. Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor, Jonghoon Ahn, Zhujing Xu, Jaehoon Bang, Yu-Hao Deng, Thai M. Hoang, Qinkai Han, Ren-Min Ma, Tongcang Li, arXiv:1804.06570
  14. GHz Rotation of an Optically Trapped Nanoparticle in Vacuum, René Reimann, Michael Doderer, Erik Hebestreit, Rozenn Diehl, Martin Frimmer, Dominik Windey, Felix Tebbenjohanns, Lukas Novotny, arXiv:1803.11160
  15. Optical potential mapping with a levitated nanoparticle at sub-wavelength distances from a membrane, Rozenn Diehl, Erik Hebestreit, René Reimann, Martin Frimmer, Felix Tebbenjohanns, Lukas Novotny, arXiv:1803.04917
  16. Shaw G. Current state of the art in small mass and force metrology within the International System of Units[J]. Measurement Science and Technology, 2018.
  17. Ramsey interference from electron spins in a levitating macroscopic particle, T. Delord, L. Schwab, L. Nicolas, L. Lecordier, G. Hétet,  arXiv:1801.07798
  18. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap, Zhenhai Fu, Xuan She, Nan Li, Huizhu Hu, arXiv:1801.05408
  19. Table top searches for screened scalar interactions associated with dark energy, David C. Moore (Yale U.)2017 - 5 pages(2017), Conference: C17-03-18, p.285-290 Proceedings
  20. Coupling mechanical motion of a single atom to a micromechanical cantilever, Wenjie Nie, Aixi Chen, and Yueheng Lan, Optics Express Vol. 25, Issue 26, pp. 32931-32947 (2017)
  21. Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states, Thai M. Hoang, Rui Pan, Jonghoon Ahn, Jaehoon Bang, H. T. Quan, Tongcang Li,  arXiv:1706.09587
  22. Optical levitation of 10 nanogram spheres with nano-g acceleration sensitivity, Fernando Monteiro, Sumita Ghosh, Adam Getzels Fine, David C. Moore, arXiv:1711.04675
  23. Fonseca, P. Z. G. (2017). Levitated Optomechanics in a hybrid electro-optical trap (Doctoral dissertation, University College London).
  24. Jain, Vijay. Levitated optomechanics at the photon recoil limit. PhD Diss. ETH Zurich, 2017.
  25. Single-beam Dielectric Microsphere Trapping with Optical Heterodyne Detection, Alexander D. Rider, Charles P. Blakemore, Giorgio Gratta, David C. Moore, arXiv:1710.03558
  26. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble, Aixi Chen, Wenjie Nie, Ling Li, Wei Zeng, Qinghong Liao, Xianbo Xiao, Optics Communications 403, 97 (2017)
  27. Gravitational Decoherence, Angelo Bassi, André Großardt, Hendrik Ulbricht,  arXiv:1706.05677
  28. Auxiliary-cavity-assisted ground-state cooling of optically levitated nanosphere in the unresolved-sideband regime Jin-Shan Feng, Lei Tan, Huai-Qiang Gu, Wu-Ming Liu,  arXiv:1705.10926
  29. Bykov, Dmitry. "Flying particles inside hollow-core photonic crystal fibres and their applications." PhD thesis,
  30. Magnetometry via spin-mechanical coupling in levitated optomechanics, Pardeep Kumar, M. Bhattacharya, arXiv:1705.07453
  31. Detecting Casimir torque with an optically levitated nanorod; Zhujing Xu, Tongcang Li; arXiv:1704.08770
  32. Bistability and squeezing the librational mode of an optically trapped nanoparticle, Ke-Wen Xiao, Nan Zhao, and Zhang-qi Yin*, arXiv:1705.00114.
  33. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets J. Prat-Camps, C. Teo, C. C. Rusconi, W. Wieczorek, O. Romero-Isart,  arXiv:1703.00221
  34. Optically driven ultra-stable nanomechanical rotor; Stefan Kuhn, Benjamin A. Stickler, Alon Kosloff, Fernando Patolsky, Klaus Hornberger, Markus Arndt, James Millen; arXiv:1702.07565
  35. Thermometry of levitated nanoparticles in a hybrid electro-optical trapE B Aranas, P Z G Fonseca, P F Barker and T S Monteiro; Journal of Optics, Volume 19, Number 3, 034003 (2017)
  36. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “The second order magnetic field gradient induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator”, arXiv:1610.09922.
  37. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum; Lei-Ming Zhou, Ke-Wen Xiao, Jun Chen, Nan Zhao; arXiv:1609.08678
  38. Zhang-qi Yin*, Tongcang Li*, “Bringing quantum mechanics to life: from Schrodinger's cat to Schrodinger's microbe”, accepted for Contemporary Physics (invited review), arXiv:1608.05322.
  39. Micro-orbits in a many-branes model and deviations from $1/r^ 2$ Newton's law, A Donini, SG Marimón - arXiv preprint arXiv:1609.05654, 2016
  40.  Nonlinear dynamics and cavity cooling of levitated nanoparticles; P. Z. G. Fonseca ; E. B. Aranas ; J. Millen ; T. S. Monteiro ; P. F. Barker; Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220D (September 16, 2016); doi:10.1117/12.2239020
  41. Optomechanical sphere: coupling rotational and translational motion via a continuous measurement; Jason F. Ralph, Kurt Jacobs, Jonathon Coleman;  arXiv:1607.01600.
  42.  Split-sideband spectroscopy in slowly modulated optomechanics; E.B. Aranas, P.G.Z. Fonseca, P. F. Barker, T.S.Monteiro; arXiv:1606.07377
  43. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence; Wenchao  Ge  and  M.  Bhattacharya; arXiv:1606.07054
  44. Thai M. Hoang, Yue Ma, Jonghoon Ahn, Jaehoon Bang, F. Robicheaux, Zhang-Qi Yin*, and Tongcang Li*, “Torsional optomechanics of a levitated nonspherical nanoparticle”,  arXiv:1605.03990.
  45. McGloin, D., McDonald,, C. and Belotti, Y. (2016) Colloidal Interactions with Optical Fields: Optical Tweezers, in Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics (eds A. Fernandez-Nieves and A. M. Puertas), John Wiley & Sons, Inc, Hoboken, NJ, USA. doi: 10.1002/9781119220510.ch7
  46. Feedback-induced Bistability of an Optically Levitated Nanoparticle:A Fokker-Planck Treatment; Wenchao  Ge,  Brandon  Rodenburg,  and  M.  Bhattacharya; arXiv:1604.06767
  47. Search for Screened Interactions Below the Dark Energy Length Scale Using Optically Levitated Microspheres; Alexander D. Rider, David C. Moore, Charles P. Blakemore, Maxime Louis, Marie Lu, Giorgio Gratta; Phys. Rev. Lett. 117, 101101 (2016),
  48. arXiv:1604.04908
  49. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers; David Grass, Julian Fesel, Sebastian G. Hofer, Nikolai Kiesel, Markus Aspelmeyer; arXiv:1603.09393
  50. Direct Measurement of Photon Recoil from a Levitated Nanoparticle; Vijay Jain, Jan Gieseler, Clemens Moritz, Christoph Dellago, Romain Quidant, Lukas Novotny; arXiv:1603.03420
  51. Zeptonewton force sensing with nanospheres in an optical lattice; Gambhir Ranjit, Mark Cunningham, Kirsten Casey, Andrew A. Geraci;  arXiv:1603.02122
  52. Optomechanics based on angular momentum exchange between light and matter,Hao Shi, Mishkat Bhattacharya, arXiv:1512.08989
  53. Optical-response properties in levitated optomechanical systems beyond the low-excitation limit; Wenjie Nie, Aixi Chen, and Yueheng Lan; Phys. Rev. A 93, 023841 (2016).
  54. Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system, Wenjie Nie, Aixi Chen, Yueheng Lan, Qinghong Liao and Shiyao Zhu, 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025501
  55. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters; Wenjie Nie, Aixi Chen, and Yueheng Lan, Optics Express Vol. 23, Issue 24, pp. 30970-30984 (2015).
  56. Quantum Model of Cooling and Force Sensing With an Optically Trapped Nanoparticle; B. Rodenburg, L. P. Neukirch, A. N. Vamivakas, M. Bhattacharya; Optica Vol. 3, Issue 3, pp. 318-323 (2016), arXiv:1503.05233
  57.  Theory of Feedback Cooling of an Optically Trapped Nanoparticle into the Quantum Ground State, Brandon V. Rodenburg, Levi Neukirch, Monica Rizzo, Nick Vamivakas, and Mishkat Bhattacharya, Frontiers in Optics 2015, San Jose, California United States, 18–22 October 2015
  58. Tongcang Li* and Zhang-Qi Yin*, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator", Sci. Bull. 61, 163 (2016), arXiv:1509.03763.
  59. Nagornykh P. Cooling and Stabilization of Graphene Nanoplatelets in High Vacuum. PhD thesis, University of Maryland, 2015.
  60. Title: CONTROL AND VERIFICATION OF QUANTUM MECHANICAL SYSTEMS; Dvir Kafri, Doctor of Philosophy, 2015; University of Maryland, College Park
  61. Title: Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum; Authors: Stefan Kuhn, Peter Asenbaum, Alon Kosloff, Michele Sclafani, Benjamin A. Stickler, Stefan Nimmrichter, Klaus Hornberger, Ori Cheshnovsky, Fernando Patolsky, Markus Arndt; Source: Nano Lett., DOI: 10.1021/acs.nanolett.5b02302, arXiv:1506.04881
  62. Title: Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum; Authors: Gambhir Ranjit, David P. Atherton, Jordan H. Stutz, Mark Cunningham, Andrew A. Geraci; Source: arXiv:1503.08799
  63. Zhang-qi Yin, Zhao Nan, Tongcang Li, "Hybrid opto-mechanical systems with nitrogen-vacancy centers" (review), submitted to SCIENCE CHINA Physics, Mechanics & Astronomy, arXiv:1501:00636.
  64. Title: Cold atoms as a coolant for levitated optomechanical systems; Authors: Gambhir Ranjit, Cris Montoya, Andrew A. Geraci; Source: arXiv:1412.5503
  65. Title: Testing spontaneous wave-function collapse models on classical mechanical oscillators; Author: Lajos Diósi; Source: arXiv:1411.4341.
  66. Title: Mirror-induced decoherence in hybrid quantum-classical theory; Authors: A Lampo, L Fratino, HT Elze; Source: arXiv:1410.4472.
  67. Title: Search for Millicharged Particles Using Optically Levitated Microspheres; Authors: David C. Moore, Alexander D. Rider, Giorgio Gratta; Source: arXiv:1408.4396.
  68. Title: Generating large steady-state optomechanical entanglement by the action of Casimir force; Authors: NIE WenJie, LAN YueHeng, LI Yong & ZHUShi Yao; Source: Sci China-Phys Mech Astron, 2014, doi: 10.1007/s11433-014-5580-4
  69. SCHMIDT, OLIVER ALEXANDER. "Dynamics of Optically Trapped Microparticles in Hollow-Core Photonic Crystal Fibers." PhD Thesis,
  70. Book Title: Cavity Optomechanics: Nano- and Micromechanical ResonatorsInteracting with Light;  Chapter 4,  Editors: Markus Aspelmeyer,Tobias J. Kippenberg,Florian Marquardt; Publisher: Springer Berlin Heidelberg
  71. Title:  A classical channel model for gravitational decoherence; Authors: D Kafri et al; New J. Phys. 16, 065020 (2014).
  72. Title: Gravity-related spontaneous collapse in bulk matter; Authors: L. Diósi; Source: arXiv:1404.6644, 2014 New J. Phys. 16 105006
  73. Title: Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction; Authors: Wenjie Nie, Yueheng Lan, Yong Li, and Shiyao Zhu; Source: Phys. Rev. A 88, 063849 (2013).
  74. Nan Zhao*, Zhang-qi Yin, “Room temperature ultra-sensitive mass spectrometer via dynamic decoupling”, arXiv:1311.2266.
  75. Title: Review of cavity optomechanical cooling Liu Yong-Chun, Hu Yu-Wen, Wong Chee Wei, Xiao Yun-Feng; Source: Chin. Phys. B, 2013, 22(11): 114213.
  76. Title: Probing macroscopic realism via Ramsey correlations measurements; Authors: Asadian, A.; Brukner, C.; Rabl, P..  Source: arXiv:1309.2229.