Citation to review of optomechanics

  1. Single-beam Dielectric Microsphere Trapping with Optical Heterodyne Detection, Alexander D. Rider, Charles P. Blakemore, Giorgio Gratta, David C. Moore, arXiv:1710.03558
  2. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble, Aixi Chen, Wenjie Nie, Ling Li, Wei Zeng, Qinghong Liao, Xianbo Xiao, Optics Communications 403, 97 (2017)
  3. Macroscopic quantum states: measures, fragility and implementations, Florian Fröwis, Pavel Sekatski, Wolfgang Dür, Nicolas Gisin, Nicolas Sangouard,  arXiv:1706.06173
  4. Gravitational Decoherence, Angelo Bassi, André Großardt, Hendrik Ulbricht,  arXiv:1706.05677
  5. Auxiliary-cavity-assisted ground-state cooling of optically levitated nanosphere in the unresolved-sideband regime Jin-Shan Feng, Lei Tan, Huai-Qiang Gu, Wu-Ming Liu,  arXiv:1705.10926
  6. Bykov, Dmitry. "Flying particles inside hollow-core photonic crystal fibres and their applications." PhD thesis,
  7. Magnetometry via spin-mechanical coupling in levitated optomechanics, Pardeep Kumar, M. Bhattacharya, arXiv:1705.07453
  8. Detecting Casimir torque with an optically levitated nanorod; Zhujing Xu, Tongcang Li; arXiv:1704.08770
  9. Bistability and squeezing the librational mode of an optically trapped nanoparticle, Ke-Wen Xiao, Nan Zhao, and Zhang-qi Yin*, arXiv:1705.00114.
  10. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets J. Prat-Camps, C. Teo, C. C. Rusconi, W. Wieczorek, O. Romero-Isart,  arXiv:1703.00221
  11. Optically driven ultra-stable nanomechanical rotor; Stefan Kuhn, Benjamin A. Stickler, Alon Kosloff, Fernando Patolsky, Klaus Hornberger, Markus Arndt, James Millen; arXiv:1702.07565
  12. Thermometry of levitated nanoparticles in a hybrid electro-optical trapE B Aranas, P Z G Fonseca, P F Barker and T S Monteiro; Journal of Optics, Volume 19, Number 3, 034003 (2017)
  13. Kang Cai, Rui-Xia Wang, Zhang-qi Yin*, Gui-Lu Long*, “The second order magnetic field gradient induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator”, arXiv:1610.09922.
  14. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum; Lei-Ming Zhou, Ke-Wen Xiao, Jun Chen, Nan Zhao; arXiv:1609.08678
  15. Zhang-qi Yin*, Tongcang Li*, “Bringing quantum mechanics to life: from Schrodinger's cat to Schrodinger's microbe”, accepted for Contemporary Physics (invited review), arXiv:1608.05322.
  16. Micro-orbits in a many-branes model and deviations from $1/r^ 2$ Newton's law, A Donini, SG Marimón - arXiv preprint arXiv:1609.05654, 2016
  17.  Nonlinear dynamics and cavity cooling of levitated nanoparticles; P. Z. G. Fonseca ; E. B. Aranas ; J. Millen ; T. S. Monteiro ; P. F. Barker; Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99220D (September 16, 2016); doi:10.1117/12.2239020
  18. Optomechanical sphere: coupling rotational and translational motion via a continuous measurement; Jason F. Ralph, Kurt Jacobs, Jonathon Coleman;  arXiv:1607.01600.
  19.  Split-sideband spectroscopy in slowly modulated optomechanics; E.B. Aranas, P.G.Z. Fonseca, P. F. Barker, T.S.Monteiro; arXiv:1606.07377
  20. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence; Wenchao  Ge  and  M.  Bhattacharya; arXiv:1606.07054
  21. Thai M. Hoang, Yue Ma, Jonghoon Ahn, Jaehoon Bang, F. Robicheaux, Zhang-Qi Yin*, and Tongcang Li*, “Torsional optomechanics of a levitated nonspherical nanoparticle”,  arXiv:1605.03990.
  22. McGloin, D., McDonald,, C. and Belotti, Y. (2016) Colloidal Interactions with Optical Fields: Optical Tweezers, in Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics (eds A. Fernandez-Nieves and A. M. Puertas), John Wiley & Sons, Inc, Hoboken, NJ, USA. doi: 10.1002/9781119220510.ch7
  23. Feedback-induced Bistability of an Optically Levitated Nanoparticle:A Fokker-Planck Treatment; Wenchao  Ge,  Brandon  Rodenburg,  and  M.  Bhattacharya; arXiv:1604.06767
  24. Search for Screened Interactions Below the Dark Energy Length Scale Using Optically Levitated Microspheres; Alexander D. Rider, David C. Moore, Charles P. Blakemore, Maxime Louis, Marie Lu, Giorgio Gratta; Phys. Rev. Lett. 117, 101101 (2016),
  25. arXiv:1604.04908
  26. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers; David Grass, Julian Fesel, Sebastian G. Hofer, Nikolai Kiesel, Markus Aspelmeyer; arXiv:1603.09393
  27. Direct Measurement of Photon Recoil from a Levitated Nanoparticle; Vijay Jain, Jan Gieseler, Clemens Moritz, Christoph Dellago, Romain Quidant, Lukas Novotny; arXiv:1603.03420
  28. Zeptonewton force sensing with nanospheres in an optical lattice; Gambhir Ranjit, Mark Cunningham, Kirsten Casey, Andrew A. Geraci;  arXiv:1603.02122
  29. Optomechanics based on angular momentum exchange between light and matter,Hao Shi, Mishkat Bhattacharya, arXiv:1512.08989
  30. Optical-response properties in levitated optomechanical systems beyond the low-excitation limit; Wenjie Nie, Aixi Chen, and Yueheng Lan; Phys. Rev. A 93, 023841 (2016).
  31. Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system, Wenjie Nie, Aixi Chen, Yueheng Lan, Qinghong Liao and Shiyao Zhu, 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025501
  32. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters; Wenjie Nie, Aixi Chen, and Yueheng Lan, Optics Express Vol. 23, Issue 24, pp. 30970-30984 (2015).
  33. Quantum Model of Cooling and Force Sensing With an Optically Trapped Nanoparticle; B. Rodenburg, L. P. Neukirch, A. N. Vamivakas, M. Bhattacharya; Optica Vol. 3, Issue 3, pp. 318-323 (2016), arXiv:1503.05233
  34.  Theory of Feedback Cooling of an Optically Trapped Nanoparticle into the Quantum Ground State, Brandon V. Rodenburg, Levi Neukirch, Monica Rizzo, Nick Vamivakas, and Mishkat Bhattacharya, Frontiers in Optics 2015, San Jose, California United States, 18–22 October 2015
  35. Tongcang Li* and Zhang-Qi Yin*, “Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator", Sci. Bull. 61, 163 (2016), arXiv:1509.03763.
  36. Nagornykh P. Cooling and Stabilization of Graphene Nanoplatelets in High Vacuum. PhD thesis, University of Maryland, 2015.
  37. Title: CONTROL AND VERIFICATION OF QUANTUM MECHANICAL SYSTEMS; Dvir Kafri, Doctor of Philosophy, 2015; University of Maryland, College Park
  38. Title: Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum; Authors: Stefan Kuhn, Peter Asenbaum, Alon Kosloff, Michele Sclafani, Benjamin A. Stickler, Stefan Nimmrichter, Klaus Hornberger, Ori Cheshnovsky, Fernando Patolsky, Markus Arndt; Source: Nano Lett., DOI: 10.1021/acs.nanolett.5b02302, arXiv:1506.04881
  39. Title: Attonewton force detection using microspheres in a dual-beam optical trap in highvacuum; Authors: Gambhir Ranjit, David P. Atherton, Jordan H. Stutz, Mark Cunningham, Andrew A. Geraci; Source: arXiv:1503.08799
  40. Zhang-qi Yin, Zhao Nan, Tongcang Li, "Hybrid opto-mechanical systems with nitrogen-vacancy centers" (review), submitted to SCIENCE CHINA Physics, Mechanics & Astronomy, arXiv:1501:00636.
  41. Title: Cold atoms as a coolant for levitated optomechanical systems; Authors: Gambhir Ranjit, Cris Montoya, Andrew A. Geraci; Source: arXiv:1412.5503
  42. Title: Testing spontaneous wave-function collapse models on classical mechanical oscillators; Author: Lajos Diósi; Source: arXiv:1411.4341.
  43. Title: Mirror-induced decoherence in hybrid quantum-classical theory; Authors: A Lampo, L Fratino, HT Elze; Source: arXiv:1410.4472.
  44. Title: Search for Millicharged Particles Using Optically Levitated Microspheres; Authors: David C. Moore, Alexander D. Rider, Giorgio Gratta; Source: arXiv:1408.4396.
  45. Title: Generating large steady-state optomechanical entanglementby the action of Casimir force; Authors: NIE WenJie, LAN YueHeng, LI Yong & ZHUShi Yao; Source: Sci China-Phys Mech Astron, 2014, doi: 10.1007/s11433-014-5580-4
  46. SCHMIDT, OLIVER ALEXANDER. "Dynamics of Optically Trapped Microparticles in Hollow-Core Photonic Crystal Fibers." PhD Thesis,
  47. Book Title: Cavity Optomechanics: Nano- and Micromechanical ResonatorsInteracting with Light;  Chapter 4,  Editors: Markus Aspelmeyer,Tobias J. Kippenberg,Florian Marquardt; Publisher: Springer Berlin Heidelberg
  48. Title:  A classical channel model for gravitational decoherence; Authors: D Kafri et al; New J. Phys. 16, 065020 (2014).
  49. Title: Gravity-related spontaneous collapse in bulk matter; Authors: L. Diósi; Source: arXiv:1404.6644, 2014 New J. Phys. 16 105006
  50. Title: Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction; Authors: Wenjie Nie, Yueheng Lan, Yong Li, and Shiyao Zhu; Source: Phys. Rev. A 88, 063849 (2013).
  51. Nan Zhao*, Zhang-qi Yin, “Room temperature ultra-sensitive mass spectrometer via dynamic decoupling”, arXiv:1311.2266.
  52. Title: Review of cavity optomechanical cooling Liu Yong-Chun, Hu Yu-Wen, Wong Chee Wei, Xiao Yun-Feng; Source: Chin. Phys. B, 2013, 22(11): 114213.
  53. Title: Probing macroscopic realism via Ramsey correlations measurements; Authors: Asadian, A.; Brukner, C.; Rabl, P..  Source: arXiv:1309.2229.