
Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

In earlier apps that we designed in this course, we
used TinyDB to store and retrieve data on our
physical device (phone or tablet). But in this
lesson, we will build a simple Clicker App that will
store and retrieve data from a cloud database on
the web.

Imagine a teacher asking the class a question and
students voting on it. We want to design an app
that can not only store the results from each
student in one central place but also allow the
teacher and the students to view the results in real
time.

Objectives: In this lesson you will learn to:

● create an app that can be used to poll
individuals and store responses on the
web in a cloud database;

● understand the concept of centralizing
and sharing Web data;

● grasp the difference between
synchronous and asynchronous
operations;

● use a CloudDB database.

Short Handout

Click to watch video

Introduction: The CloudDB Database

In today’s Internet connected world users of mobile devices can benefit by accessing data
stored external to the device. In this Clicker App we will poll a set of users and store the results
of the poll in a centralized CloudDB database. We will then display the results of that poll in
real-time on our mobile devices.

CloudDB is a non-visible component (indicated by the blue cloud logo) that can be used to store
and retrieve data values in a database located on the Web. It can be found in the Palette’s
Storage drawer. Whereas TinyDB stores data only on the device running the app, CloudDB can
be shared among multiple users and multiple devices running the same app because it is online
in the cloud.

https://course.mobilecsp.org/
https://docs.google.com/document/d/10wiCYVDcvVUsmBnTJWsIJicaOhAOZD8nsS-_Wh_oHd4/edit?usp=sharing


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

CloudDB is a free, experimental, web-based database that is integrated into App Inventor 2.
Data can be shared between users by making sure that the ProjectID and Token of the
applications are the same when the CloudDB component is selected (see image, below). This
happens automatically if two users load the same .apk file from the same QR code.

Note that the tags are case sensitive in a CloudDB.

Because this app is more easily tested using .apk files, we recommend it be built (and tested)
on Android devices until iOS .apk files become available in App Inventor.

Getting Started

Start App Inventor with the Clicker App Template. Once the project opens, use Save As to
rename your project CloudDBstudent. You should see a User Interface similar to the one shown
above.

Note: CloudDB sometimes has connection problems due to server overload. If you get a socket
connection error, switch to using the Experimental/FirebaseDB and its associated blocks instead
of CloudDB in this tutorial!

Designing the User Interface

Most of the UI is already built for you. Add two new non-visible components: a Notifier and a
CloudDB.

https://course.mobilecsp.org/
http://ai2.appinventor.mit.edu/?repo=templates.appinventor.mit.edu/trincoll/csp/unit7/templates/ClickerAppCloudDB/ClickerCloudDBtemplate.asc


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

UI Component Name Properties
Notifier Notifier1 ● Default settings used

CloudDB CloudDB1 ● Default settings used.

Note the two non-visible components shown above, the Notifier and CloudDB will be used in the
App.

Coding the App

This app uses two variables agreeCount and disagreeCount that count the number of votes
when the thumb up or thumb down buttons are clicked. Create these two variables.

Variables Values
agreeCount 0

disagreeCount 0

When the user presses the “Thumbs Up” or “Thumbs Down” buttons, we want to add 1 to the
appropriate variable and store it in the database. The RESET button sets the variables back to 0
and stores them in the database. The reset is mostly used for debugging purposes since a real

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

version of the Clicker app would likely not offer this feature to a student user. However, in a later
enhancement, we will build a “Teacher” version of this app. For that enhancement, the Reset
button will become a functional and important feature for the Teacher user.

Create two new procedures getDBvalues and storeDBvalues. You can leave them blank for
now. And create the following event handlers. When the app first starts with the
Screen1.initialize event handler, you will call getDBvallues. When the user clicks on any of the
buttons, you will add 1 to the appropriate variable and call storeDBvalues.

In summary, here are the event handlers:

Event Handlers Algorithms
Screen1.Initialize Call a new procedure getDBvalues.

ButtonAgree.Click Add 1 to agreeCount. Call a new procedure storeDBvalues.

ButtonDisagree.Click Add 1 to disagreeCount. Call procedure storeDBvalues.

ButtonReset.Click Set agreeCount to 0. Set disagreeCount to 0. Call procedure
storeDBvalues.

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

Get and Store CloudDB Values

When the screen first initializes in our clicker app, we need to fetch data immediately from the
database to initialize the screen with whatever values are currently stored in the database.

When the users click on the voting buttons and change the variable value, these must be stored
in the database using CloudDB1.StoreValue blocks.

Like the TinyDB, data stored in CloudDB is associated with a unique tag. Note that this tag is
case-sensitive and must match exactly in GetValue and StoreValue! In this app, we use the
tags “agree” and “disagree” as the tags for storing the two variables that keep track of the
votes.

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

Synchronous vs. Asynchronous Retrieval

Notice the difference between the CloudDB.GetValue block and the TinyDB.GetValue:

The CloudDB.GetValue is a statement block whereas the TinyDB.GetValue is an expression
block. Notice the puzzle-piece appendage on the top left of the TinyDB expression block, which
is missing from the statement block. This difference is crucial to understand. In the case of
TinyDB when you retrieve a value you would use the expression block to immediately assign it
to a variable, as we did in a previous lesson.

TinyDB.GetValue is an example of synchronous retrieval. This means the retrieval happens
immediately. Synchronous means at the same time. So the retrieval happens at the same time
as when the GetValue block executes. The TinyDB is stored on the device’s permanent storage
(i.e., flash drive) and the retrieval is nearly instantaneous. While the retrieval of data from
TinyDB is many milliseconds slower than retrieving data from the device’s RAM memory (which
would take microseconds), the difference would not be noticeable to the user.

However, synchronous retrieval is impossible over the Web. In order to retrieve something from
the Web your app must send a request over the Internet. This takes time, usually a few
milliseconds but that’s not the same as at the same time. Therefore, retrieval over the Web is
asynchronous retrieval -- i.e., not at the same time.

Moreover, things could go wrong when retrieving data over the Internet. For example, your Wifi
connection could be slow or dropped. Or, the web site storing the data could be down. Or, any
number of other I/O problems could result. Because of this, the app cannot wait for the data to
be received. Instead, when the device receives the requested data it will trigger an event and it
will notify your app.

GotValue and DataChanged Events

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

When the data returns from the database, it will call the CloudDB.GotValue event handler. Or if
the data is changed by another user, it will call the CloudDB.DataChanged event handler. The
GotValue event handler is used to respond to the GetValue commands that run when the app
first initializes whereas the DataChanged event handler is triggered whenever data in the
database changes while the app is running. We can have both of these event handlers call a
new procedure called gotData. Create this new procedure and use the blue mutator button to
give it two parameters tag and value.

Have both the CloudDB1.GotValue and the CloudDB1.DataChanged event handlers call this
new procedure gotData.

The gotData procedure figures out which query was answered -- i.e., which tag has been
requested -- and updates the internal data variable associated with the corresponding response.
If we were expecting a number but no number was returned (as may happen the first time the
app is run or in the case of an error), we can set the data element to a safe value of zero with

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

the use of the “if not is number ...” statements shown (this part is optional but good error
checking). This procedure can also call another new procedure called updateDisplay.

The updateDisplay procedure, puts the variable values in the labels to show the votes so far:

In summary, you will need to develop the following event handlers and procedures to use
CloudDB:

Event Handlers Algorithms
Screen1.Initialize Call a new procedure getDBvalues.

ButtonAgree.Click Add 1 to agreeCount. Call a new procedure storeDBValues.

ButtonDisagree.Click Add 1 to disagreeCount. Call procedure storeDBValues.

ButtonReset.Click Set agreeCount to 0. Set disagreeCount to 0. Call procedure
storeDBValues.

CloudDB1.GotValue Call a new procedure gotData with 2 parameters tag and value.

CloudDB1.DataChanged Call a new procedure gotData with 2 parameters tag and value.

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

Abstraction:
Procedures

Algorithms

getDBvalues Calls CloudDB1.getValue for the tag “agree” and 0 for the
valueIfTagNotThere.
Calls CloudDB1.getValue for the tag “disagree” and 0 for the
valueIfTagNotThere.

storeDBvalues Call CloudDB.storeValue with tag “agree” and value agreeCount.
Call CloudDB.storeValue with tag “disagree” and value disagreeCount.

gotData(tag, value) If the tag is “Agrees” then set agreeCount to the value returned from
the database.
Else if the tag is “Disagrees” then set disagreeCount to the value
returned from the database.
Call new procedure updateDisplay.

updateDisplay Set labelAgree to “Agree:” joined with agreeCount.
Set labelDisagree to “Disagree:” joined with disagreeCount.

Error Handling

If CloudDB returns an error message of some sort (perhaps an Internet issue, a server problem,
etc.), we want to display the error message that is received by the app to the user. We,
therefore, encode the WebServiceError handler as shown using a Notifier.

Note: CloudDB sometimes has connection problems due to server overload. If you get a socket
connection error, switch to using the Experimental/FirebaseDB and its associated blocks instead
in this tutorial!

Testing the App

This app is best tested by forming a group of students where everyone in the group loads one
student's app using Build/App (provide QR code for apk). Or the whole class could load 1
student’s app projected on the screen. When one of student in your group votes, the latest data

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

should update on everyone’s screen. Because this app is more easily tested using .apk files, we
recommend it be built (and tested) on Android devices until iOS .apk files become available in
App Inventor.

Inputs Expected Outputs Actual Outputs
Test clicking agree and
disagree buttons with other
people in your group.

All apps in the group should update
whenever you click on a button and
show the agree and disagree counts.

?

Enhancements

Enhancement #1: Create a Bar Chart Using the Thumb Switches
Read this documentation or watch this video on sliders. Sliders or thumb switches are most
frequently used to allow the user to set the value of some property by moving their thumb on a
sliding scale. For our Clicker app, we will be using this component in reverse - to create a bar
chart based on the ratio of “Agree” and “Disagree” votes recorded by the app.

Programming the Sliders
When we add the two Slider components to the User Interface, we have to be sure to set the
MaxValue property to 100 since our display will be based on a percentage:

The general idea for setting the Slider ThumbPosition property is to divide the number of
“Agree” or “Disagree” votes by the total number of votes and then multiplying by 100 to
determine the percentage of “Agree” and “Disagree” votes.

https://course.mobilecsp.org/
http://ai2.appinventor.mit.edu/reference/components/userinterface.html#Slider
https://www.youtube.com/watch?v=cm2-kVcWTuw&feature=youtu.be


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

We have to be careful not to divide by zero (which will cause a run-time error) when the app is
first started, when the number of “Agree” and “Disagree” votes are both zero. Using IF
statements can allow us to set the value of the slider position to zero when the total votes is
zero. We have not shown these “IF” blocks; you have to figure them out for yourself.

Enhancement #2: Allow Users to Vote Only Once
Modify the app so that the Clicker only allows the user to vote once (hint: there is an Enabled
property for buttons). Votes will still be updated by the DataChanged procedure which is called
automatically when the data in the database is updated. Add re-enabling the voting buttons
when the user hits reset. You may want to consider turning off this feature when it comes time
for you to demonstrate your app to your instructor.

Enhancement #3: Build a Teacher Version of the App
Add a feature that will allow a special version of the app, the “Teacher” version, to update the
question displayed on the screen in real time. First in the student app,

● Change the student version of the app to accept new questions while the app is
running. This will involve adding code to the CloudDB.DataChanged event
handler to see if the question was changed in the database (use the “question”
tag) and changing the question label accordingly and re-enabling the voting
buttons. Note that the Question data will consist of a string, whereas the agree
and disagree data were numbers.

● Remove the RESET button from the UI of the student side so that only the teacher
can reset the counters.

Build a separate version of the app called "ClickerTeacher" (use File/Save As). Allow only this
version to change the questions. Note that when you use File/Save As, the CloudDB token and
ProjectID will both stay the same, so the student app and the teacher app can share the same
database. Also, when testing the app, it may be easier to use QR codes to load the two versions
of the app instead of trying to use the Companion.

Note: If using Projects/Save As does not copy the CloudDB token, you may need to copy and
paste the token from the student version into a text editor (e.g. a Google doc) and then copy
and paste the token from the text editor into the teacher version.

● Replace the Question Label in the teacher version of the app with a TextBox to
allow the teacher to update the question field in real time.

● Add an “Update Question” button to the teacher app that will store the new
question into the CloudDB database from where it will get pushed to all the users.
Remember the tag name you used! Also, reset the counters and store them in the
database too.

● Test with your group with one student using the teacher app and the rest using the

https://course.mobilecsp.org/


Mobile CSP | Student Lesson
Unit 7 | Clicker with CloudDB Tutorial

Course Listing: course.mobilecsp.org

corresponding student apps.

Summary

Vocabulary Review

Review the following new vocabulary in this lesson:
● Synchronous data operations
● Asynchronous data operations
● Cloud or web database

https://course.mobilecsp.org/

