
SPIP: Support Kafka delegation token in 

Structured Streaming 
Author: Gabor Somogyi 

Background and Motivation 

In Spark 2.4 Structured Streaming can connect to Kafka in a secure way only by using KDC and 

no delegation token support available. Until now one of the possible solutions was to distribute 

keytab files to executors (please see this example application for further details) but there are a 

few commonly raised concerns with this approach: 

●​ It’s not considered the best security practice to ship keytabs around. 

●​ In case of a large number of Kafka topic partitions, all executors may try logging in to the 

KDC at the same time, potentially leading to DDOS attack. 

 

Kafka added delegation token support in version 1.1.0 (further information can be found here) 

and Spark updated it’s Kafka client library to 2.0.0 in SPARK-18057. These events made 

delegation token support available in Spark. 

 

As I haven’t found example application for Kafka’s delegation token I’ve created a standalone 

one. 

 

This document proposes a solution to have Kafka delegation token support in Structured 

Streaming. 

Target Personas 

Everybody using Structured Streaming with secured Kafka. 

Goals 

●​ Add Kafka delegation token support for Structured Streaming. 

Non-Goals 

●​ Add Kafka delegation token support for DStreams. 

https://github.com/gaborgsomogyi/spark-structured-secure-kafka-app
https://cwiki.apache.org/confluence/display/KAFKA/KIP-48+Delegation+token+support+for+Kafka
https://issues.apache.org/jira/browse/SPARK-18057
https://github.com/gaborgsomogyi/kafka-delegation-token
https://github.com/gaborgsomogyi/kafka-delegation-token


Proposed API Changes 

Additional parameters has to be provided in Spark’s configuration but only if delegation token 

needed. Please see Design Sketch. 

Design Sketch 

In Spark there is already a framework to handle delegation tokens for HDFS, HBase and Hive. In 

this proposal this infrastructure intended be extended. 

 

Please note the following diagrams are not covering all use-cases and not always reflecting 

exact class/function names, these are just for presentation purposes. 

 

High level diagram about the existing framework in Yarn cluster mode with keytab file: 

 

 

And here is a sequence diagram how tokens obtained: 



 

In case of mesos instead of YARNHadoopDelegationTokenManager 
MesosHadoopDelegationTokenManager has similar functionality. 

 

As it’s shown on the sequence diagram HadoopDelegationTokenManager has an 

Iterable<HadoopDelegationTokenProvider>. Each provider represents a service. 

The proposal is to add a Kafka specific delegation token provider similar to 

HBaseDelegationTokenProvider. This will load a Kafka utility class through reflection which will 

be placed in external/kafka-0-10-sql not to pollute core projects with Kafka specific details. The 

utility class will contain all the Kafka related specifics to get the token. The planned interface is 

something like: 

 

def obtainToken(sparkConf: SparkConf): (Token[_ <: TokenIdentifier], Long) = ... 



 

Initial token fetching is at the very beginning in the Spark process, before parsing source/sink 

parameters. Passing Kafka parameters now possible on source/sink (see an example here) 

which is late from delegation token point of view. 

 

The proposal is to define parameters in Spark’s config which makes them available through 

SparkConf. These parameters would be required only if delegation token was used. 

 

In order to turn off provider the following parameter can be used: 

●​ spark.security.credentials.kafka.enabled: Optional, Default: true 

 

In order to get/provide the token itself the following Kafka parameters needed (further information 

about these parameters can be found here): 

●​ bootstrap.servers: Optional, Default: null 

●​ security.protocol: Optional, Default: SASL_SSL 

●​ sasl.kerberos.service.name: Optional, Default: kafka 

●​ ssl.truststore.location: Optional, Default: null 

●​ ssl.truststore.password: Optional, Default: null 

●​ ssl.keystore.location: Optional, Default: null 

●​ ssl.keystore.password: Optional, Default: null 

●​ ssl.key.password: Optional, Default: null 

 

The proposal is to put them into Spark’s config with “spark.kafka.” prefix with the following rules. 

●​ If the parameters are not provided the already existing Kafka source/sink parameter 

handling applies. 

●​ If the parameters provided they will be used the following ways: 

-​ Check if token required 

-​ Get/renew token 

 

The proposed condition to decide whether token has to be obtained: 

(bootstrap.servers defined && security.protocol is in (SASL_SSL, SSL, SASL_PLAINTEXT)) 

 

Then the obtained delegation token will be sent through the already existing 

UpdateDelegationTokens event to the executors. 

 

Renewal is triggered by the already existing AMCredentialRenewer in case of yarn and 

MesosHadoopDelegationTokenManager in case of mesos. 

 

https://github.com/gaborgsomogyi/spark-structured-secure-kafka-app/blob/407c162c2cfe1a458797ea1df87e41af1ba3f0f9/src/main/scala/com/cloudera/spark/examples/StructuredKafkaWordCount.scala#L59
http://kafka.apache.org/documentation/#configuration


The proposal is to provide obtained delegation tokens to KafkaConsumer/KafkaProducer 
instances using dynamic JAAS configuration if sasl.mechanism is SCRAM related on 

source/sink (could be set to SCRAM-SHA-256 or SCRAM-SHA-512). Dynamic configuration 

keeps tokens in-memory which is advisable from a security perspective. 

 

There are cached KafkaConsumer/KafkaProducer instances which are considered in the 

following way: 

●​ KafkaDataConsumer: Task could fail because token is changed. If the task is a retry 

it invalidates the cached consumer and creates a new one with the appropriate 

token. (This is being rewritten but the mentioned behavior seems stay) 

●​ CachedKafkaProducer: This uses the provided kafka parameters as a key so if the 

token changes a new producer will be created. The old one will evict by default in 10 

minutes. 

 

Optional Rejected Designs 

Proposal 1: 

Instead of defining Kafka parameters in Spark’s configuration the existing delegation token framework 

could be refactored to get started only after source/sink parameters were parsed. 

 
Reject reasons: 

●​ I see high risk to refactor already existing delegation token management for HDFS, Hive and 
HBase. Honestly I don’t think anybody can tell what kind of problems could cause this step. 

●​ It’s a huge refactor and I don’t see the return of investment. 
 

Proposal 2: 
Instead of defining Kafka parameters in Spark’s configuration external/kafka-0-10-sql library can 

build up it’s own lazy mechanism to obtain/renew/provide delegation tokens. 

 
Reject reasons: 

●​ There is already a framework to handle delegation tokens and building up a separate 

universe with maybe copy/paste is rarely a good idea. 

 

Proposal 3: 

Instead of defining Kafka parameters in Spark’s configuration, a new file can be used. 

 

https://cwiki.apache.org/confluence/display/KAFKA/KIP-85%3A+Dynamic+JAAS+configuration+for+Kafka+clients


Reject reasons: 
●​ I’m not sure it is worth it to create a new config for these small amounts of parameters. 

 


	SPIP: Support Kafka delegation token in Structured Streaming 
	Background and Motivation 
	Target Personas 
	Goals 
	Non-Goals 
	Proposed API Changes 
	Design Sketch 
	Optional Rejected Designs 
	Proposal 1: 
	Proposal 2: 
	Proposal 3: 



