RDBMS ASSIGNMENTS

- 1. Draw E-R diagram and convert entities and relationships to relation table for a given scenario.
 - a. Two assignments shall be carried out i.e., consider two different scenarios (eg. bank, college)
- 2. Write relational algebra queries for a given set of relations.
- 3. Perform the following:

Creating Tables (With and Without Constraints),

Inserting/Updating/Deleting Records in a Table, Saving (Commit) and Undoing (rollback)

- 4. Perform the following:
 - a. Altering a Table, Dropping/Truncating/Renaming Tables, Backing up / Restoring a Database.
- 5. For a given set of relation schemes, create tables and perform the following

Simple Queries, Simple Queries with Aggregate functions, Queries with Aggregate functions (group by and having clause),

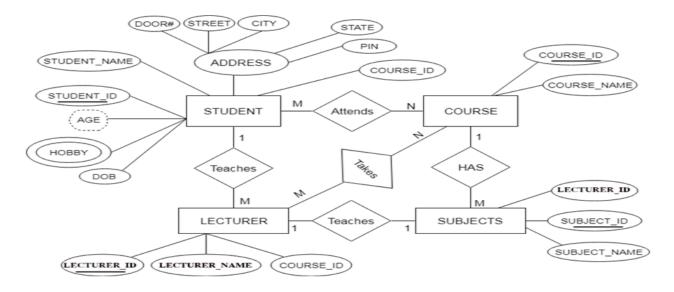
Join Queries-Inner join and outer join

- 6. Queries involving- Date Functions, String Functions, Math Functions Subqueries- With IN clause, With EXISTS clause
- 7. For a given set of relation tables perform the following
 - a. Creating Views (with and without check option), Dropping views, Selecting from a

view

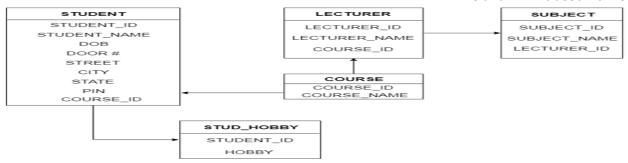
Assignment 1:

1. COLLEGE DATABASE:

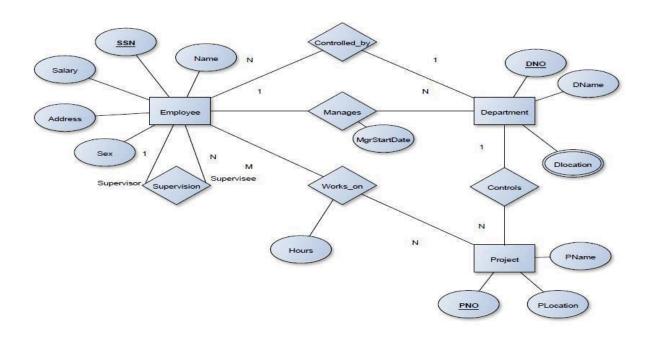

STUDENT (student_id, student_name, address, Course_id, DOB)
COURSE (course_id, course_name)
LECTURER (Lecturer_id, Lecturer_name, Course_name)
SUBJECTS (Lecturer_id, Subject_id, Subject_name)

2. COMPANY DATABASE:

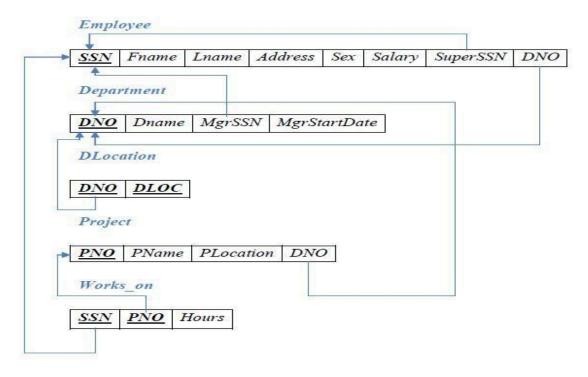
EMPLOYEE (SSN, Name, Address, Sex, Salary, SuperSSN, DNo)
DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)
DLOCATION (DNo,DLoc)
PROJECT (PNo, PName, PLocation, DNo)
WORKS ON (SSN, PNo, Hours)


SOLUTION:

College Database: E-R Diagram



Mapping entities and relationships to relation table (Schema Diagram)


RDBMS and DAA Lab Journal 2022

COMPANY DATABASE E-R Diagram

Schema Diagram

Assignment 2 Write relational algebra queries for a given set of relations.

Student

ID	NAME	MARK
1	Jessy	70
2	Vishnu	75
3	Dwayne	80

. To retrieve entire details from STUDENT

σ (STUDENT)

2. To retrieve details from STUDENT where ID=2 $\sigma_{\text{ID}=2}$

(STUDENT)

II Attribute (Relation)

1. To retrieve ID and NAME from STUDENT.

Π ID, NAME (STUDENT)

Combination of Select and Project: Retrieve ID and Name from STUDENT where mark>=75 Π ID, NAME (σ Mark>=75 (STUDENT))

3. Retrieve students name either participant in arts or sports

ARTS

ID	NAM E
1	Α
2	В
3	С

SPORTS

ID	NAME
3	С
2	В
4	D

NAME (ARTS) U NAME (SPORTS)

ARTS **U** SPORTS

ID	NAME
1	А
2	В
3	С
4	D

Assignment 3

Consider the Company database with following tables

Employee Table

		I.						
	EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO	
	2201 2202	JOHN ANJAN	SMITH SHAH	PRESIDENT PRESIDENT	BANGALORE CHENNAI	250000 120000	1 2	
Dept. Of Comp	uter Scie	nce GFGCW,	Jamkhandi				Page	e 5

RDBMS and DAA Lab Journal 2022

2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3
2206	DEEPTI	В	ANALYST	CHENNAI	95000	3
2207	DHIRAJ	M	SALESMAN	CHENNAI	95000	2
2208	MANOJ	M	SALESMAN	BANGALORE	95000	2
2209	KRITIKA	MALHOTRA	AUDITOR	MANGALORE	90000	4
2210	SANJANA	SHARMA	CASHIER	DELHI	60000	1

Department Table

D.No	DName	DLocation
1	FINANCE	BANGALORE
2	MARKETING	BANGALORE
3	IT	BANGALORE
4	AUDIT	MYSORE

Perform the following:

- 1. Creating Tables (With and Without Constraints)
- 2. Inserting/Updating/Deleting Records in a Table
- 3. Saving (Commit) and Undoing (rollback)

SOLUTION:

1. Creating Tables (With and Without Constraints)

```
CREATE TABLE DEPARTMENT (
DNO VARCHAR2 (20) PRIMARY KEY,
DNAME VARCHAR2 (20),
DLOCATION VARCHAR (20)
);
```

CREATE TABLE **EMPLOYEE** (
EID NUMBER (20) PRIMARY KEY,
FNAME VARCHAR (20),
LNAME VARCHAR (20),
JOB_NAME VARCHAR (20),
ADDRESS VARCHAR (20),
SALARY NUMBER NOT NULL,
DNO REFERENCES DEPARTMENT (DNO));

2). Inserting/Updating/Deleting Records in a Table,

INSERTING RECORDS INTO DEPARTMENT TABLE:

SQL> INSERT INTO DEPARTMENT VALUES(1, 'FINANCE', 'BANGALORE');

1 row created.

SQL> INSERT INTO DEPARTMENT VALUES(2, 'MARKETING', 'BANGALORE');

1 row created.

SQL> INSERT INTO DEPARTMENT VALUES(3,'IT','BANGALORE');

1 row created.

SQL> INSERT INTO DEPARTMENT VALUES(4,'AUDIT','MYSORE');

1 row created.

INSERTING RECORDS INTO EMPLOYEE TABLE:

SQL> INSERT INTO EMPLOYEE

VALUES(2201, 'JOHN', 'SMITH', 'PRESIDENT', 'BANGALORE', 250000, 1);

1 row created.

SQL> INSERT INTO EMPLOYEE VALUES(2202, 'ANJAN', 'SHAH', 'PRESIDENT', 'CHENNAI', 120000, 2); 1 row created.

SQL> INSERT INTO EMPLOYEE

VALUES(2203, 'AMRIT', 'WARMA', 'MANAGER', 'BANGALORE', 140000, 3);

1 row created.

SQL> INSERT INTO EMPLOYEE VALUES(2204, 'ANKITA', 'SHAH', 'MANAGER', 'DELHI', 120000, 4); 1 row created.

SQL> INSERT INTO EMPLOYEE VALUES(2205, 'ASHRITA', 'SHARMA', 'ANALYST', 'DELHI', 90000, 3); 1 row created.

SQL> INSERT INTO EMPLOYEE VALUES (2206, 'DEEPTI', 'B', 'ANALYST', 'CHENNAI', 95000, 3);

1 row created.

SQL> INSERT INTO EMPLOYEE VALUES (2207, 'DHIRAJ', 'M', 'SALESMAN', 'CHENNAI', 95000,2); 1 row created.

SQL> INSERT INTO EMPLOYEE VALUES (2208, 'MANOJ', 'M', 'SALESMAN', 'BANGALORE', 95000, 2); 1 row created.

SQL> INSERT INTO EMPLOYEE VALUES

(2209, 'KRITIKA', 'MALHOTRA', 'AUDITOR', 'MANGALORE', 90000, 4);

1 row created.

SQL> INSERT INTO EMPLOYEE VALUES

(2210, 'SANJANA', 'SHARMA', 'CASHIER', 'MANGALORE', 60000, 1);

1 row created.

SQL> select *from department;

DNO	DNAME	DLOCATION
1	FINANCE	BANGALORE
2	MARKETING	BANGALORE
3	IT	BANGALORE
4	AUDIT	MYSORE

SQL> SELECT * FROM EMPLOYEE;

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3
2206	DEEPTI	В	ANALYST	CHENNAI	95000	3
2207	DHIRAJ	M	SALESMAN	CHENNAI	95000	2
2208	MANOJ	M	SALESMAN	BANGALORE	95000	2
2209	KRITIKA	MALHOTR	RA AUDITOR	MANGALORE	90000	4
2210	SANJANA	SHARMA	CASHIER	DELHI	60000	1

Demonstrate the usage of Update and Delete commands for single and multiple records.

UPDATE:

SQL query to update the employee address as 'Delhi' of employee ID '2210' from Employee Table.

SQL> UPDATE EMPLOYEE SET ADDRESS='DELHI' WHERE EID='2210';

DELETE:

SQL query to delete the employee ID '2208' from employee table.

SQL> DELETE FROM EMPLOYEE WHERE EID='2208'; 1 row deleted.

SQL> SELECT EID FROM EMPLOYEE;

EID	
2201	
2202	
2203	
2204	
2205	
2206	
2207	
2209	
2210	

9 rows selected.

SQL query to delete the employee who is from Mangalore from Employee Table.

SQL> DELETE FROM EMPLOYEE WHERE ADDRESS='MANGALORE'; 1 row deleted.

SQL> SELECT ADDRESS FROM EMPLOYEE;

ADDRESS

BANGALORE

CHENNAI

BANGALORE

DELHI

DELHI

CHENNAI

CHENNAI

DELHI

3). COMMIT and ROLLBACK

Before concluding this section on Data Manipulation Language commands there are two further commands, which are very useful. Changes made to the database by INSERT, UPDATE and DELETE commands are temporary until explicitly committed. This is performed by the command:

COMMIT;

SOL> commit;

Commit complete.

On execution of this command all changes to the database made by you are made permanent and cannot be undone.

- A COMMIT is automatically executed when you exit normally from SQL*Plus. However, it does no harm to occasionally issue a COMMIT command.
- A COMMIT does not apply to any SELECT commands as there is nothing to commit.
- A COMMIT does not apply to any DDL commands (eg CREATE TABLE, CREATE INDEX, etc). These are automatically committed and cannot be rolled back.
- If you wished to rollback (ie undo) any changes made to the database since the last commit, you can issue the command:

ROLLBACK;

A group of related SQL commands that all have to complete successfully or otherwise be rolled back, is called a transaction. Part of your research for Outcome 3 includes investigating transaction processing and the implications of rollback and commit.

SQL> rollback;

Rollback complete.

Assignment 4

Perform the following:

a. Altering a Table, Dropping/Truncating/Renaming Tables, Backing up / Restoring a Database.

SQL> desc department;

Name	Null?	Туре
DNO	NOT NULL	VARCHAR2(20)
DNAME	TOTTOLL	VARCHAR2(20)
DLOCATION		VARCHAR2(20)

Altering a Table:

1. Rename The Table Department as Dept

Solution:

SQL> alter table department rename to dept;

Table altered.

SQL> DESC DEPT;

Name	Null?	Type
DNO	NOT NULL	VARCHAR2(20)
DNAME DLOCATION		VARCHAR2(20) VARCHAR2(20)

2. Add a new column PINCODE to the existing table Dept

Solution:

SQL> ALTER TABLE DEPT ADD PINCODE NUMBER (6);

Table altered.

SQL> desc dept;

Name	Null?	Type
DNO	NOT NULL	VARCHAR2(20)
DNAME	NOT NOLL	VARCHAR2(20)
DLOCATION		VARCHAR2(20)
PINCODE		NUMBER (6)
FINCODE		NOMBER (0)

3. To delete a column (attribute) from Table dept.

Solution:

SQL> ALTER TABLE DEPT DROP COLUMN PINCODE;

Table altered.

SQL> DESC DEPT1;

Name	Null?	Туре
DNO	NOT NULL	VARCHAR2(20)
DNAME		VARCHAR2(20)
DLOCATION		VARCHAR2(20)

4. Rename the column DNAME to DEPT_NAME IN DEPT TABLE.

Solution:

SQL> ALTER TABLE DEPT RENAME COLUMN DNAME TO DEPT_NAME;

Table altered.

SQL> desc dept;

Name	Null?	Type
DNO	NOT NULL	VARCHAR2(20)
DEPT_NAME		VARCHAR2(20)
DLOCATION		VARCHAR2(20)
PINCODE		NUMBER(6)

5. Change the datatype of column DLOCATION as CHAR with size 10.

Solution:

SQL> ALTER TABLE DEPT MODIFY DLOCATION CHAR(10);

Table altered.

SQL> DESC DEPT;

Name	Null?	Type
DNO	NOT NULL	VARCHAR2(20)
DEPT_NAME		VARCHAR2(20)
DLOCATION		CHAR (10)
PINCODE		NUMBER (6)

6. Delete table

SQL> DROP TABLE DEPARTMENT; Table dropped.

7. Truncate table

SQL> TRUNCATE TABLE DEPT; Table truncated.

8. To take backup

SQL> Create table dept_Bkp as Select *from dept; Table created.

Assignment 5

Consider the following Employee table

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
						-
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3

2206 DEEPTI B ANALYST CHENNAI 95000

Perform the following:

1. Display all the fields of employee table

SQL> select *from employee;

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3
2206	DEEPTI	В	ANALYST	CHENNAI	95000	3

2. Retrieve employee ID and their salary.

SQL> select eid, salary from employee;

EID	SALARY
2201	250000
2202	120000
2203	140000
2204	120000
2205	90000
2206	95000

3. Retrieve fname, Iname, job_name from employee

SQL> select fname, lname, job name from employee;

FNAME	LNAME	JOB_NAME	
JOHN	SMITH	PRESIDENT	
ANJAN	SHAH	PRESIDENT	
AMRIT	WARMA	MANAGER	
ANKITA	SHAH	MANAGER	
ASHRITA	SHARMA	ANALYST	
DEEPTI	В	ANALYST	

4. Retrieve the fname, salary of an employee who is taking maximum(Highest) salary.

SQL> select Fname, salary from employee

2 where salary = (select max(salary) from employee);

FNAME	SALARY
JOHN	250000

5. Demonstrate the usage of BETWEEN, IN, LIKE, AND OR, NOT.

SQL> select*from employee where salary between 120000 and 250000;

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4

SQL> select *from employee where salary in (120000,140000);

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY I	ONO
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4

SQL> select *from employee where not(eid='2204');

RDBMS and DAA Lab Journal 2022

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3
2206	DEEPTI	В	ANALYST	CHENNAI	95000	3

SQL> select * from employee where fname like 'a%';

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2202	ANJAN	SHAH	PRESIDENT	CHENNAI	120000	2
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3

SQL Queries to Demonstrate the usage of Aggregate Functions.

Retrieve average salary of all employee

SQL> select avg(salary) from employee;

AVG(SALARY)

105022 222

125833.333

Retrieve number of employees

SQL> select count (*) from employee;

COUNT (*)	
6	
Retrieve the number of	rows in salary field
SQL> select count(salary	y) from employee1;
COUNT(SALARY)	
6	
Retrieve Maximum Sal	ary from employee
SQL> select max(salary)) from employee;
MAX(SALARY)	
250000	
Retrieve Minimum Sala	ary from employee
SQL> select min(salary)	from employee;
MIN(SALARY)	
90000	
Retrieve Minimum Sala	ary and Minimum salary from employee
SQL> select max(salary)),min(salary) from employee;
MAX(SALARY)	MIN(SALARY)
250000	90000
To display the sum of sa	alary
SQL> SELECT SUM(S.	ALARY) FROM EMPLOYEE;
SUM(SALARY)	

count the number of employees who are taking more than 120000 salary.

SQL> select count(salary) from employee where salary>120000;

COUNT(SALARY)

2

SQL Queries to demonstrate the usage of Group By and Order by

SQL> select *from employee order by fname asc;

EID	FNAME	LNAME	JOB_NAME	ADDRESS	SALARY	DNO
2203	AMRIT	WARMA	MANAGER	BANGALORE	140000	3
2204	ANKITA	SHAH	MANAGER	DELHI	120000	4
2205	ASHRITA	SHARMA	ANALYST	DELHI	90000	3
2206	DEEPTI	В	ANALYST	CHENNAI	95000	3
2201	JOHN	SMITH	PRESIDENT	BANGALORE	250000	1

Display name of employee in descending order

SQL> select fname from employee **order by** fname desc;

FNAME

JOHN

DEEPTI

ASHRITA

ANKITA

ANJAN

AMRIT

6 rows selected.

Retrieve total salary of employee which is greater than >120000

SQL> select fname, sum(salary) from employee

- 2 group by (fname)
- 3 **having** sum(salary)>120000;

FNAME SUM(SALARY)

AMRIT 140000 JOHN 250000

SQL Queries Demonstrate the Join Queries

Write the queries to implement the joins

SQL> create table studentnew(

- 2 rollno number(25),
- 3 name varchar(25),
- 4 address varchar(25),
- 5 phone number,
- 6 age number);

Table created.

SQL> create table stdcoursenew(

- 2 courseid varchar(25),
- 3 rollno number);

Table created.

```
SQL> insert into studentnew values(1,'arpita','bijapur',9887666,19);
```

1 row created.

SQL> insert into stdcoursenew values('bsc123',1);

1 row created.

SQL> insert into stdcoursenew values('bsc123',2);

1 row created

SQL> insert into stdcoursenew values('bsc123',3);

1 row created.

SQL> insert into stdcoursenew values('bsc123',4);

1 row created.

SQL> insert into stdcoursenew values('bsc125',5);

1 row created.

SQL> select * from stdcourse;

COURSEID ROLLNO

BSC123	1
BSC124	2
BSC125	4
BSC127	3
BSC127	5

SQL> select * from studentnew;

ROLLNO.	NAME	ADDRESS	PHONE.	AGE
1.	arpita	bijapur	9887666.	19
2.	bindu	jamakhandi	78999989.	. 18
4	chandrika	rabakavi	8999999.	19

ROLI	LNO.	NAME	ADDR	ESS	PHONE	•	AGE	1
3.	deeika	as t	banahatti	i 89	99989		20	-
2.	srusthi	i h	nubli	789	999989 .		20	
3.	srusthi	ŀ	nubli	78	3999989.		20	

6 rows selected.

INNER JOIN

SQL> select stdcoursenew.courseid,studentnew.name,studentnew.age from studentnew

- 2 inner join stdcoursenew
- 3 on studentnew.rollno=stdcoursenew.rollno;

OUTPUT:

COURSEID NAME		AGE
bsc123	arpita	19
bsc123	bindu	18
bsc123	chandrika	19
bsc123	deeikas	20
bsc123	srusthi	20
bsc123	srusthi	20
6 rows selected.		

RIGHT JOIN

SQL> SELECT Studentnew.NAME,Stdcoursenew.courseid

- 2 FROM Studentnew
- 3 RIGHT JOIN Stdcoursenew
- 4 ON StdCoursenew.rollno = Studentnew.rollno;

OUTPUT:

NAME	COURSEID		
arpita	bsc123		
bindu	bsc123		
chandrika	bsc123		
deeikas	bsc123		
srusthi	bsc123		
srusthi	bsc123		

FULL JOIN

SQL> SELECT Studentnew.NAME,Stdcoursenew.courseid

- 2 FROM Studentnew
- 3 FULL JOIN Stdcoursenew
- 4 ON StdCoursenew.ROLLNO = Studentnew.ROLLNO;

OUTPUT:

NAME	COURSEID
arpita	bsc123

srusthi	bsc123
bindu	bsc123
srusthi	bsc123
deeikas	bsc123
chandrika	bsc123

7 rows selected.

LEFT JOIN

SQL> select studentnew.name,stdcoursenew.courseid

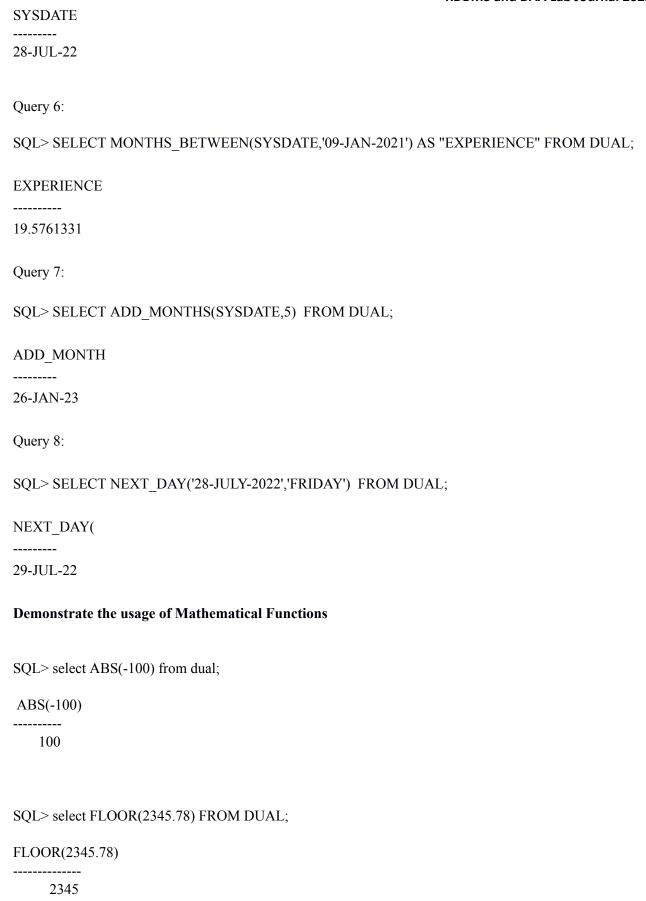
- 2 from studentnew
- 3 left join stdcoursenew
- 4 on stdcoursenew.rollno=studentnew.rollno;

OUTPUT:

NAME	COURSEID		
•,	1 122		
arpita	bsc123		
srusthi	bsc123		
bindu	bsc123		
srusthi	bsc123		
deeikas	bsc123		
chandrika.	bsc123		

6 rows selected.

Assignment 6


Perform the String Functions, Date functions and Mathematical functions supported by Oracle

Demonstrate the usage of String Functions


```
SQL> SELECT LOWER('WELCOME TO DBMS LAB') FROM DUAL;
LOWER('WELCOMETODBM
-----
welcome to dbms lab
SQL> SELECT REPLACE('HELLO','H','K') FROM DUAL;
REPLA
KELLO
SQL> SELECT REPLACE('COMPUTER','C','K') FROM DUAL;
REPLACE(
KOMPUTER
SQL> SELECT REPLACE('HELLO','L','A') FROM DUAL;
REPLA
----
HEAAO
SQL> SELECT TRIM('A' FROM 'ANJANA') FROM DUAL;
TRIM
----
NJAN
SQL> SELECT LTRIM('ANJANA','A') FROM DUAL;
LTRIM
NJANA
SQL> SELECT LTRIM('ANIL','A') FROM DUAL;
LTR
NIL
SQL> SELECT RTRIM('ANITA','A') FROM DUAL;
RTRI
```

ANIT SQL> SELECT RTRIM('ANJANA','A')FROM DUAL; **RTRIM** ----**ANJAN Demonstrate the usage of Date Functions** Query 1: SQL> SELECT CURRENT_DATE FROM DUAL; CURRENT D 28-JUL-22 Query 2: SQL> SELECT EXTRACT(YEAR FROM SYSDATE) FROM DUAL; EXTRACT(YEARFROMSYSDATE) 2022 Query 3: SQL> SELECT EXTRACT (DAY FROM SYSDATE) FROM DUAL; EXTRACT(DAYFROMSYSDATE) _____ 28 Query 4: SQL> SELECT EXTRACT(MONTH FROM SYSDATE) FROM DUAL; EXTRACT(MONTHFROMSYSDATE) 7 Query 5: SQL> SELECT SYSDATE FROM DUAL;


```
SQL> SELECT GREATEST(23,67,90,123,78,50) FROM DUAL;
GREATEST(23,67,90,123,78,50)
           123
SQL> SELECT LEAST(34, 21,67,11,89,9) FROM DUAL;
LEAST(34,21,67,11,89,9)
          9
SQL> SELECT LENGTH('RAJESHWARI') FROM DUAL;
LENGTH('RAJESHWARI')
        10
SQL> SELECT LENGTH(17245637) FROM DUAL;
LENGTH(17245637)
       8
SQL> SELECT SQRT(16) FROM DUAL;
SQRT(16)
    4
SQL> SELECT POWER(2,4) FROM DUAL;
POWER(2,4)
   16
SQL> SELECT power(2,10) FROM DUAL;
POWER(2,10)
-----
   1024
```

```
SQL> SELECT ROUND(5.86) FROM DUAL;
ROUND(5.86)
SQL> SELECT ROUND(1001.6) FROM DUAL;
ROUND(1001.6)
-----
    1002
SQL> SELECT ROUND(1001.2) FROM DUAL;
ROUND(1001.2)
-----
    1001
SQL> SELECT SIN(90) FROM DUAL;
 SIN(90)
.893996664
SQL> SELECT COS(45) FROM DUAL;
 COS(45)
.525321989
SQL> SELECT MOD(4,3) FROM DUAL;
MOD(4,3)
SQL> SELECT MOD(5,3) FROM DUAL;
MOD(5,3)
-----
    2
```

Assignment 7

For a given set of relation tables

EID ENAME	ADDRESS	SALARY	DEPTNO
1 aruna	delhi	25000	101
2 Aarushi	haryana	30000	102
3 ashrita	H.P	20000	103
4 Suprita	MP	2500	104
5 Drishti	AP	35000	105

perform the following

- a. Creating Views (with and without check option),
- b. Selecting from a view
- c. Dropping views,

Solution:

a. Creating Views (with and without check option)

Example 1.

SQL> create view emps as

- 2 select ename, salary
- 3 from employee1;

View created.

Example 2.

SQL> create view empss as

- 2 select ename, salary, address
- 3 from employee1
- 4 where dno=104

5 with check option;

b. Selecting from a view.

Example 1:

SQL> select *from emps;

ENAME	SALARY
aruna	25000
arushi	30000
ashrita	20000
Suprita	25000
Drishti	35000

Example 2.

SQL> select *from empss;

ENAME	SALARY A	ADDRESS
Suprita	25000	MP

c. Dropping views,

SQL> drop view emps;

View dropped.