
App Inventor extensions
Initial Release 1.0 (Introduced as part of MIT App Inventor Release nb149)
DRAFT: September 27, 2015
Updated: June 9, 2017
Updated: May 17, 2021
sample extensions are at: MIT App Inventor Extension
source code for sample extensions at: http://appinventor.mit.edu/extensions
Appinventor help: https://community.appinventor.mit.edu/

Note: App Inventor extensions are supported only on Android devices running API Level 8
(Android system 2.2 Froyo) and above. This applies to creating extensions, building projects
that import extensions, and running packaged APKs of projects that use extensions. Extensions
are not (yet) supported in iOS.

1. Overview of App Inventor extension components

2. How to use extension components
2.1 Importing extension components
2.2 Some sample extensions to try
2.3 Building projects with extension components
2.4 Deleting extension components
2.5 Sharing projects that use extension components
2.6 Extension component repositories
2.7 Naming extension components
2.8 Updating projects that use extensions

3. How to create extension components
3.1 Practice creating a sample component
3.2 Convert your sample component to an extension
3.2.2 Test your extension
3.3 Details on creating extensions

3.3.1 When you start to build
3.3.2 Requesting permissions for the extensions you define
3.2.3 Using external libraries
3.2.4 Choosing a package name for your extension

3.4 Sharing your extension

http://appinventor.mit.edu/extensions/
http://appinventor.mit.edu/extensions
https://community.appinventor.mit.edu/

Acknowledgements

Appendix A: Temporary instructions for obtaining the source code

1. Overview of App Inventor extension components

App Inventor apps are built using components. Components let the apps use the built-in
features of the mobile device (like Camera or LocationSensor) or services on the Web (like
Twitter or FusionTables). App Inventor includes a large collection of components, and the App
Inventor development team adds new capabilities to the system by implementing new
components.

There have been many requests to include additional features in App Inventor. Some of these
are special-purpose features that would have only a few users, where it would be undesirable to
include these in the core system for everyone. Other features might be good additions to the
core system, but the App Inventor development team’s effort has gone to other priorities.
Anyone can use the App Inventor free and open source code to implement their own
components, but until now the only way to make these available to others has been to include
them in private versions of App Inventor that are hosted and managed individually.

App Inventor Extensions let anyone create Extension Components. Extension components can
be used in building projects, just like other components. The difference is that extension
components can be distributed on the Web and loaded into App Inventor dynamically: they do
not have to be built into the App Inventor system, and they can be imported into projects as
needed. With extensions, the range of App Inventor apps can be virtually unlimited.

One use of extensions, for example, is for educators and educational software developers to
provide extension components tailored to specific lessons and activities that students can use in
building apps. Examples might be simulations or data analysis tools. Those apps might be
unfeasible to create directly with the built-in App Inventor blocks, either because of processing
speed or programming complexity. But those same apps might be readily programmable in the
App Inventor framework, using extension components that perform the necessary processing.

Anyone can create extension components. This requires gaining familiarity with the App
Inventor source code (located on Github) and programming the extension in Java. Extension
components are packaged as aix files. Once you create an extension component, anyone can
use it in their App Inventor projects. Extension component aix files can be housed anywhere
on the Web. The aix files need not be stored at MIT or any other particular place, although MIT
hosts a repository where people can make aix files available for sharing and public use.

Note: One limitation of the current extension component implementation is that it
creates non-visible components only (i.e., components that do not show on the designer
screen). MIT plans to remove this restriction in future versions of the extension
component system.

2. How to use extension components

You use an App Inventor extension component just as you would use an ordinary built-in
component, except that you’ll first need to import the extension into your project.

2.1 Importing extension components

Before you can import an extension component, you must have a project open. Start a new
project, or open an existing one. To import an extension, look in the components palette at the
left of the screen under Extensions and click the “Import extension” link as in the figure below.
This will bring up a window that lets you specify an extension to import. Extensions are defined
by aix files. You can import an extension from an aix file on your computer or you can specify a
URL to import from the Web.

Figure 1: Importing an extension

When you import an extension, App Inventor will give you the opportunity to rename it, as
shown in the figure.

Figure 2: Renaming an extension when you import it.

You’ll generally want to keep the default name. See the section below on naming for cases
where you might want to choose a different name.

Once you import an extension, it will appear in the components palette under the extensions
category as shown in the figure below.

After importing an extension, make sure to restart the companion app, else an error may occur.

Figure 3: An imported extension shown in components palette

2.2 Some sample extensions to try

Here are some sample extension components to experiment with. You can find these in the
MIT App Inventor Extensions repository at MIT App Inventor Extensions. MIT will be adding
more examples to this collection, and would like to evolve it into a site for people to share
extensions. You can import the extensions using the URL indicated, or you can download the
aix files to your local computer and import the files from there.

●​ VectorArithmetic created by Ethan Hon​
Takes in two vectors and can add them to return a result vector.​
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CSHlFQVBCRk5OYlB3
U3FDWFNlNDhvOVp5bDM4

http://appinventor.mit.edu/extensions/
mailto:e.hon.dev@gmail.com
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CSHlFQVBCRk5OYlB3U3FDWFNlNDhvOVp5bDM4
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CSHlFQVBCRk5OYlB3U3FDWFNlNDhvOVp5bDM4

●​ ImageProcessor created by Justus Raju​
ImageProcessor can do a weighted combine of two images, return the grayscale of an
image.
http://appinventor.mit.edu/extensions/data/extensions/ai.cdk.justus.ImageProcessor.aix​
Here is a clean project that demos the use of the component. You can import this aia
directly too. http://appinventor.mit.edu/extensions/data/demo/ImageProcessorDemo.aia

●​ SoundAnalysis created by Mouhamadou Oumar Sall​
 Multimedia component that analyzes the pitch of a sound through the microphone and
returns it. It can be used as an input to different situations, for instance to control some
components with a specific sound whistle(pitch > 500Hz) or clap(pitch > 2000Hz). ​
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CUTZONWpKZUw2YXJ
lWHBMcERuaUliZWREdU5R

●​ ScaleDetector created by Hal Abelson

This component adds a pinch detector capability to a Canvas. For an explanation, see
Using App Inventor extensions to implement multitouch.

2.3 Building projects with extension components

Once you have imported an extension component into a project, it will appear in the component
palette under the Extensions section. You use the extension component just like any other
component by dragging it from the palette to the designer screen, where it will
appear under the designer screen as an non-visible component. (Currently, all extension
components are non-visible components.) You’ll also see it in the Blocks Editor, together with
blocks for its methods, properties and events. The figures below illustrate how an imported
ImageProcessor extension would appear in the Blocks Editor.

mailto:quixoticquixer@gmail.com
http://appinventor.mit.edu/extensions/data/extensions/ai.cdk.justus.ImageProcessor.aix
http://appinventor.mit.edu/extensions/data/demo/ImageProcessorDemo.aia
mailto:mouha.oumar@gmail.com
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CUTZONWpKZUw2YXJlWHBMcERuaUliZWREdU5R
https://drive.google.com/uc?export=download&id=0B22N7pfciq0CUTZONWpKZUw2YXJlWHBMcERuaUliZWREdU5R
http://groups.csail.mit.edu/mac/users/hal/hal.html
http://ai2.appinventor.mit.edu/reference/other/extensionsMultitouch.html

Figure 4: Blocks for an imported ImageProcessor component

2.4 Deleting extension components

To delete an extension from the project, click the X beside the extension. This will remove all
uses of the extension and its blocks from the project and you will not see it in Extensions
palette panel anymore.

Figure 5: Click the X to delete an imported extension.

2.5 Sharing projects that use extension components

You export and import projects that use extension components just like other App Inventor
projects, as aia files. You need not do anything different in publishing the project than in
publishing other App Inventor projects. If someone imports a project (aia file) that uses an
extension, they do not have to import the extension (aix file) separately: When they open the
project, the extension will appear in the components palette (under Extensions) together with
the project’s other components.

2.6 Extension component repositories

Extensions can be downloaded from any URL (provided you have access to it). Anyone who
creates extensions can make the aix files available however they choose. It might also be
convenient to create collections of extensions, called extension component repositories for
private or shared use. For instance, an educator might create a repository of extension
components for use in a course.

The MIT AppInventor project has created a public repository for general use, to encourage
people to create and share extensions. The repository is located at
http://appinventor.mit.edu/extensions.

2.7 Naming extension components

Extensions are created by different people working independently. So it’s likely that different
extensions might have the same name. For example, there might be two different extensions
called ImageProcessor, and you’d like to import them both. There’s no problem using the two
extensions if you use them in different projects (other than that you might get confused). But
you can’t import two extension with the same name into a single project. When you import and
extension to a project, App Inventor will give you the opportunity to rename it, as shown in
Figure 2. This will let you keep the extension names unique and also (should you prefer)
choose names for the extensions that are more convenient for you than the original names.

`
(warning when you give the extension a name that already exists in the project)

If you are developing extensions (not just using them) you can choose extension package
names to help minimize name conflicts. See the section on packages below.

2.8 Updating projects that use extensions

We have not addressed the issue of what happens when extensions are updated and how
people using the extension can be notified about this. There are two scenarios to consider:

1.​ The extension developer creates a new version of the extension, but the old version still
works.

2.​ The App Inventor system is updated so that the extension no longer works.

In either case, people importing the extension will need to look to extension developer to
provide information about updating projects that import the extension

http://appinventor.mit.edu/extensions

Warning: The extensions system is still experimental and the internal format of extensions is
changing. If you create a project (aia file) that imports an extension, it is possible that the
extension (and the project) will stop working when the extension system is upgraded. You’ll
have to rely on the extension developer to provide an updated extension.

3. How to create extension components

Extension components are created by programming in Java. The Java code can be original
code that you write, and it can also include Java libraries (jar files) from other sources.
You can create extension components for private use, or you can share them by sending people
the aix files or making the files available on the Web.

The process of creating an extension component is essentially the same as what people go
through in creating ordinary App Inventor components, both for MIT App Inventor or for local
versions built using the App Inventor free and open source code. The difference is that the
only way to make an ordinary component available to other people is to host your own App
Inventor instance, whereas with an extension component, you can publish the aix files so that
anyone can import it into any version of App Inventor.

Building an extension component is no more difficult than building an ordinary component -- but
then again, it’s no easier. If you’ve never created a component before, you should start by
reading these guides:

●​ How to Build App Inventor from the MIT sources
This shows how to get the MIT App Inventor sources and how to use them to create a
local App Inventor instance on your own computer for personal use

●​ How to Add a Component

This gives an overview of component programming, including how to implement the
Java code for the properties, methods and events, and how to define the blocks for the
Blocks editor.

It would also be a good idea to look at the resources at the MIT App Inventor Open Source Web
page. You might also want to participate in the MIT App Inventor Open Source Development
group which is a good place to find advice on implementing components.

Here are the steps we recommend in building an extension component. These are detailed in
the sections below:

1.​ Set up a local version of App Inventor for your own use, building a simple extension
component for it, as practice.

2.​ Build your desired component for your local instance and test it carefully.

https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://docs.google.com/document/d/1xk9dMfczvjbbwD-wMsr-ffqkTlE3ga0ocCE1KOb2wvw/pub
http://appinventor.mit.edu/appinventor-sources/
http://appinventor.mit.edu/appinventor-sources/
https://groups.google.com/forum/#!forum/app-inventor-open-source-dev
https://groups.google.com/forum/#!forum/app-inventor-open-source-dev

3.​ Generate an aix file, so that the extension can be imported.
4.​ Test the aix file by importing the extension into a project you build on the public App

Inventor server.
5.​ Publish your extension.

3.1 Practice creating a sample component

You can skip this step if you’ve already built App Inventor components. But if you haven’t
created components, you should first get some practice by creating a simple example. Even if
the required Java coding is minimal, there are a lot of details involved in setting up the software
for creating and running a local instance of App Inventor.

The detailed instructions for building components are in How to Build App Inventor from the MIT
sources. The instructions begin by explaining how to set up your development environment and
download the App Inventor source code from Github.

Once your environment is set up, a simple way to practice building components is to create an
ordinary extension component that’s a copy for an existing component and give it a different
name. This section shows how to create a component called AltCamera that behaves exactly
like the Camera component, except for its name. This section also shows how to convert the
AltCamera component to an extension.

To build AltCamera, install the App Inventor source code in a git repository on your local
machine, following the instructions in How to Build App Inventor from the MIT sources. Go to
the directory

appinventor/components/src/com/google/appinventor/components/runtime

and copy the file Camera.java to a new file AltCamera.java. Near the top of the file, you’ll see

@DesignerComponent(version = YaVersion.CAMERA_COMPONENT_VERSION,
 description = "A component to take a picture using the device's camera. " +
 ​ "After the picture is taken, the name of the file on the phone " +
 ​ "containing the picture is available as an argument to the " +
 ​ "AfterPicture event. The file name can be used, for example, to set " +
 ​ "the Picture property of an Image component.",
 category = ComponentCategory.MEDIA,
 nonVisible = true,
 iconName = "images/camera.png")

Change the description as follows:

https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub

description = “This is an alternate version of the Camera component.”,

The description is the text that will appear when the user presses the question mark next to the
component name in the designer pallet.

Note: For App Inventor’s built-in components, the description text is internationalized so
it can appear in the local language that App Inventor is set to. The extensions
implementation does not support internationalization and the description text will remain
as you’ve entered it, regardless of how the local language is set.

Find the class constructor

public Camera(ComponentContainer container) { ...

and change “Camera” to “AltCamera”.

In the Take Picture method, find the line

final Camera me = this;

and change “Camera” to “AltCamera”.

Finish building your modified App Inventor code, as described in How to Build App Inventor from
the MIT sources, launch it on your local machine, and connect a browser to localhost port 8888.
Log in and create a project that uses AltCamera. If all has gone well, you should see two
camera components in the designer palette Media Section: the original Camera and a new
AltCamera. Test this by using AltCamera in a project, opening the Blocks Editor, and observing
that AltCamera has all the correct blocks -- the same blocks as Camera.

3.2 Convert your sample component to an extension

3.2.1 Build the aix file for your extension

Converting your component to an extension is done with the aid of the App Inventor Extension T
emplate. The template is in the github repository

https://github.com/mit-cml/extension-template

Clone this repository to your local machine following the instructions at the bottom of the github
page.

https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://github.com/mit-cml/extension-template

In your cloned repository, find the folder my-extension/src and copy your AltCamera.java file
there. In that file, find the line

 category = ComponentCategory.MEDIA,

and change it to

 category = ComponentCategory.EXTENSION,

Now go to the folder myextension and run the command

ant

This should build your extension. It should be in the my-extension/out folder with the name

com.google.appinventor.components.runtime.aix

3.2.2 Test your extension

Now that you’ve built an extension, check that you can load it into App Inventor and use it in an
app. Open your browser to an App Inventor server. You could use ai2.appinventor.mit.edu, or
you could use a server you’ve built on your local machine.

Start a new project. In the designer palette open the Extension drawer and click import
extension. Choose the aix file you built just above and click import. AltCamera should now
appear as a component in the Extension drawer.

To do more testing, check that you can use AltCamera in your new project you, just as your
would use Camera. You can see in the Blocks Editor that it has the same blocks, which behave
just as the blocks for Camera. (They have the same implementation code.) Try building a
simple app and running it.

3.3 Details on creating extensions

Now that you’ve verified that you can create an extension component, you try experimenting
with new components of your own. As with AltCamera, it might be simpler to begin by
implementing an ordinary component, verifying that it works, and then converting the
component to an extension using the App Inventor Extension Template.

This selection list some issues to keep in mind.

3.3.1 When you start to build

You can follow the method described above and begin by creating an ordinary component on a
local instance of App Inventor, together with an app that uses the new component. For testing
on a phone or tablet, you’ll need a special App Inventor Companion that includes the new
component. You can use “ant installplay” to perform the companion installation on the device,
as explained in How to Build App Inventor from the MIT sources. Later, when you transform
you component to an extension, you do not need a special companion, but can use the ordinary
companion, e.g., from the Play Store. (Part of the extension “magic” is that is that the required
code for the extension will be installed dynamically in the companion when App Inventor loads
the extension.

Your component can be anything you can implement, with the following restrictions:

●​ It must be a non-visible component. Keep in mind that “non-visible” here refers to
visibility in the App Inventor designer, not visibility on the phone screen. You can still
create components that use anything in the Android SDK and produce visible results in
the app on the phone; they just won’t appear in the designer screen.

●​ The property editors (i.e., the things that determine how users specify property values in

the designer), must be ones that are already included in core appinventor (e.g. those
that are implemented here). One exception to this introduced with the App Inventor for
IoT release (nb158; June 2017) is that PROPERTY_TYPE_COMPONENT can be
restricted to specific classes to allow extensions to interact with one another by
appending a colon (:) followed by the fully qualified class name of the extension. This is
used, for example, to limit inputs to the BluetoothLE extension by appending
":edu.mit.appinventor.ble.BluetoothLE".

●​ The category specified in @DesignerComponent must be

category = ComponentCategory.EXTENSION

●​ The icon name file specified in @DesignerComponent should be

iconName = "images/extension.png"

Starting with nb158, you may also include your icon in a subpackage to your extension
called aiwebres. This special package name is used by App Inventor to identify
resources required to be servable by the online editor and is currently restricted to
extension icons. If you use this functionality, specify your icon as:

https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub
https://github.com/mit-cml/appinventor-sources/tree/master/appinventor/appengine/src/com/google/appinventor/client/widgets/properties

iconName = "aiwebres/iconname.png"

You could include a link to your icon on the internet, for example

iconName = "http://somewhere.com/images/yourIcon.png"

The icon should be a 16×16 png file. Caution: If you supply a URL for the icon, the icon
will not be packaged with your extension. Rather, App Inventor will read it from the Web
each time the extension is shown in the designer, which may lead to strange behavior if
the link is slow, or the target of the link changes.

3.3.2 Requesting permissions for the extensions you define

Your component might need to request permissions, just as ordinary components do, with the

@UsePermissions declaration. That will be sufficient for using the extension in projects that

you build and package.

But there is a complication with live development. Importing the extension, even if it

specifies @UsePermission, will not guarantee that the permission will be available to the App

Inventor companion for live development. In most cases, this will not be a problem because

the Companion comes with a wide range of permissions used by any of the App Inventor

built-in components. But if your extension uses a permission that is not one of these, it might

not be possible to build a project with it using live development.

3.2.3 Using external libraries

In addition to your own Java code, you can also include external libraries, by following the steps
in How to Add a Component. The library jar files will be included in the aix file when you
package your extension

One complication here is that the external libraries (jar files) must be unique across projects. If
a project imports several extensions, then two different extensions cannot import the same jar
file.\

3.2.4 Choosing a package name for your extension

The first line of your extension Java file should be a package specification, for example,

package com.google.appinventor.components.runtime;

The runtime package is the standard package used for App Inventor components.

https://docs.google.com/document/d/1xk9dMfczvjbbwD-wMsr-ffqkTlE3ga0ocCE1KOb2wvw/pub

 If you are creating an extension solely for personal use, you needn’t be concerned about the
package name. You can make the package name anything you like. There is one proviso: If
your Java code needs to reference other App Inventor classes defined in some package, you
should put your extension in that package. For example, the AltCamera class extends Android
onVisibleComponent:

public class AltCamera extends AndroidNonvisibleComponent

which is defined in the runtime package, so AltCamera.java is placed in the runtime package. If
you don’t want to place it in that package, you can import the AndroidNonVisibleComponent
class explicitly.

If you are publishing extensions for other people to use, you should pick names for your
extensions in a way that will help guarantee that your names will be unique. The method here is
similar to how websites are named. For example, if the MIT App Inventor project was going to
create a Web site named OurNewSite. we’d be following good practice by putting the Web site
at the URL OurNewSite.appinventor.mit.edu. In a similar way, if we were publishing an
extension named ImageProcessor, we would do well to use an analogous extension name that
specifies the extension as coming from appinventor and mit and edu. The convention here
(adopted from the way people name Java libraries) is to list the path elements in reverse order,
so the name would be edu.mit.appinventor.ImageProcessor.

In this naming scheme, ImageProcessor is the extension name and edu.mit.appinventor is the
package name. The two combined, edu.mit.appinventor.ImageProcessor, is called the fully
qualified name. When people import your extension, they see the extension name, not the fully
qualified name. The extension name is the name they can change when they import the
extension, as described above and shown in figure 2. But the fully qualified name is fixed:
Appinventor will not import two different components with the same fully qualified name. If you
try to do that, you’ll get an error as shown in figure 6.

Figure 6: Error signalled when trying to import a duplicate extension (i.e. with same fully
qualified name as an existing extension)

3.3.1 Change your extension to have the desired package name

To make your extension have the desired package name, you need put its Java code in a
directory tree whose subdirectories mirror the package name. This tree should sit under
appinventor/components/src. For example, to make the Imageprocessor extension be in the
package edu.mit.appinventor, you would go to the appinventor/components/src directory and in
there create the tree edu/mit/appinventor. In more detail

●​ go to the folder /appinventor/components/src, and in that folder
●​ create a folder edu, and in that folder
●​ create a folder mit, and in that folder
●​ create a folder appinventor, and in that folder
●​ put the file ImageProcessor.java

Create the corresponding tree for your desired package name, and move the Java file that
defines your component to the tree. (If you copied the Java file instead of moving it, don’t
forget to delete it from its old location in ../components/runtime.)

Now go to the Java file you just moved. At the top, you should see the line

package com.google.appinventor.components.runtime;

Change the package name from com.google.appinventor.components.runtime to your actual
package name. For example if your package name is edu.mit.appinventor, as our example
above, change the line to

package edu.mit.appinventor;

Finally, at the top of your component definition Java file, right under the package name, you’ll
see a list of imports. Add a new import at the top of the list:

import com.google.appinventor.components.runtime.*;

The reason for adding this is that your component Java definition code might have used some
modules in the original package, and these might not be available when you move to a new
package.

Note: You don’t need to import all of runtime.*, just the actual files you use. You can
identify these by attempting to build the instance and seeing where you get undefined
symbol errors.

Now that you’ve made these changes, run

ant clean

and build your local App Inventor instance again. Run your instance and connect a browser.
The result should look the same as before you changed the package. Test everything again to
verify that you can create a new working companion, and you can build projects with the new
component.

3.4 Create the aix file for your new component

When you’ve tested enough (you can never test enough!) it’s time to create the aix file that lets
people import your extension.

Make sure you have changed the @SimpleObject line just over the top of your extension Java
class to @SimpleObject(external = true).

Use the cd command to change to the directory appinventor-sources/appinventor directory:
​
​ cd <path to appinventor-sources>/appinventor

 and run the command

ant extensions

Your aix file should appear in the directory

appinventor-sources/appinventor/components/build/extensions

The name of the aix file should be the package name (prior to May 2017 it was the fully qualified
class name) of the component you created.

To test that your extension works, copy the aix file to a convenient location on your computer.
Now go to a public instance of App Inventor that does not have your extension. Make sure to
switch your companion back to the version for that instance.
Create a new project and import the extension, using the aix file from the your computer and
test once more that the imported extension works in a project.

Test your project using companion in live development mode, and also test that you can build
the project to produce a working apk file. Make sure to test both modes.

3.4 Sharing your extension

You can share your extensions by making the aix files available in any way that you choose.
People just need to access the files and import them into their projects. The MIT App Inventor
group has a small set of sample extensions at appinventor.mit.edu/extensions. We plan to
open this site as a repository for people to share extensions, after we get a bit more experience.

Remember that when you share your extensions, you are publishing software for others to use
in building their projects, and they will be relying on you to keep your extensions up to date and
bug-free.

Note: The internal representation of extensions is still undergoing change. Please use
the current testing system to experiment with creating extensions, but don’t be surprised
if these will need to be regenerated as the extensions implementation evolves.

Project that import extensions are not permitted on the MIT App Inventor Gallery, since the aix
file contains only the binary code of the extension, and apps on the Gallery must be fully
available in source code form. We are considering ways to handle this issue, but this is not yet
ready.

Acknowledgements

App Inventor extensions are a major addition to App Inventor. They were created as part of the
Google 2015 Summer of Code project by Ethan Hon, Justus Raju and Mouhamadou Sall. They
did a remarkable piece of work, and they deserve the thanks of the entire App Inventor
community.

Appendix A: Temporary instructions for obtaining the source code

To work with extensions before the merge you should replace the instructions on getting source
code at the beginning of section 2.1 of How to Build App Inventor from the MIT sources by the
following.

The App Inventor source code is available as Free and Open Source Software that you
can download. Once you’ve installed the other software listed in section 3, you can
clone a git repository of the source code by running the following git command from a
shell:

http://appinventor.mit.edu/extensions
https://docs.google.com/document/d/1Xc9yt02x3BRoq5m1PJHBr81OOv69rEBy8LVG_84j9jc/pub

 ​

This will create a folder named “appinventor-sources” where the sources (and a copy of
the repository) will reside. If you have problems with this command, please visit the MIT
Center for Mobile Learning github site at https://github.com/mit-cml.

Now fetch all the branches of the source repository and check out a new branch based
on the master branch for your own work:

git fetch origin

git checkout -b myNewBranch

As you create your extension in your repository work on this new branch.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

License

https://github.com/mit-cml/appinventor-sources.git
https://github.com/mit-cml
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	App Inventor extensions
	
	1. Overview of App Inventor extension components
	2. How to use extension components
	2.1 Importing extension components
	
	
	2.2 Some sample extensions to try
	2.3 Building projects with extension components
	
	2.4 Deleting extension components
	
	2.5 Sharing projects that use extension components
	2.6 Extension component repositories
	2.7 Naming extension components
	2.8 Updating projects that use extensions

	3. How to create extension components
	3.1 Practice creating a sample component
	3.2 Convert your sample component to an extension
	3.2.2 Test your extension
	3.3 Details on creating extensions
	3.3.1 When you start to build
	
	3.3.2 Requesting permissions for the extensions you define
	3.2.3 Using external libraries
	3.2.4 Choosing a package name for your extension
	

	3.4 Sharing your extension

	Acknowledgements

