
CSCA20 Exercise 6 
Deadline(s) 
There will be a pre-grading run on Friday November 9 at 11:59pm. If you submit your work 
before this deadline, you will receive feedback from the automarker on what grade you would 
receive on your submission, as well as any errors in your code we've found. 
 
The actual deadline for this exercise will be Sunday November 11 at 11:59pm. The latest 
version of e6.py you submit before this deadline (including possibly anything you've submitted 
before the pre-grading deadline) will be examined to determine your final grade for this exercise. 
Make sure not to modify the filename, or else the auto-marker won't see your file! 
 
Deadline-related suggestions 
I suggest you treat the pre-grading deadline as your actual deadline; ie. try to get all of your 
work done before then. If you earn a perfect grade, then you're done! And if you happen to 
make any errors, then you'll have two days to correct them in order to increase your final grade. 
Not many courses give you this opportunity, so make the best of it. 
 
We will mark the newest version submitted not later than the deadline. Don't submit just once; 
instead, submit at least once well in advance, so that you know what you're doing, and then 
keep submitting new versions as you do more of the exercise. That way, if you run out of time 
on the last function that you just can't do, you'll still get marks for the others. 
 
What you'll be required to do 
As usual, you will be completing the bodies of functions in e6.py. You will be working with 
student grade data in a CSV file. Download the file image_files.csv and place in the same 
directory as your e6.py. 
 
The format of image_files.csv is as follows. The file has no header. The lines of the file are 
of the format: 
img_filename,location,date,caption,tags,tags, ... 
The number of tags will vary line-by-line, so your functions should work for any number of tags. 
The lines of the body of the file might look like: 
images/skating.jpg,East York Arena,2014.11.03,Shea 
skating.,skating,Shea,boy 
The file may or may not be empty. 
 
The docstring for each function describes what each function is supposed to do and/or return. 
It's up to you to implement them to do what their docstrings require. Do not modify these 
docstrings. And also, do not modify the format of the functions' arguments or the function 
names. 
 



Make sure to keep any printing lines inside the if __name__ == '__main__': block at the 
bottom of your code. Specifically, do not print inside your functions unless specifically instructed 
to! Such print statements could mess up the automarker's reports. 
 
You can assume that we will be testing your code using sensible values for the arguments of 
your functions. Additionally, you can assume that the function argument values will be of the 
correct type; eg. if the docstring says that an argument is a float, we will only test by giving it 
floats. 
 
What you should also do 
You should test your code using the same guidelines from the handouts for the previous 
exercises as applicable. 
 
Additionally, you should test your code using various versions of image_files.csv which you 
create yourself. For example, vary the number of lines in the file, and vary the number of tags 
each image has. 
​
For functions that take dictionaries, it's a good idea to try the following: 

●​ Empty dict 
●​ Dict with one key-value pair 
●​ Dict with multiple key-value pairs 
●​ Vary the types of the keys and values (where applicable) 

 
As with before, we won't be grading you on how you test your code, but we will be grading you 
on how well your code works. And the best way to make sure your code works is to try and 
break it using a variety of tests. 
 
Attention to detail 
Remember that Python cannot make any intelligent corrections for you. It will only do exactly 
what you tell it to. Any typos or logical errors will make your code behave completely differently 
from what you want it to! So the best way to make sure you haven't made any of these errors is 
to test! (See above) 
 
Also, many students have stumbled upon problems with indentation (or lack thereof) leading to 
syntax errors. Make sure to indent code by exactly four spaces every time you're writing the 
body of an if statement, for loop, function call, or while loop! If you don't have at least a single 
indented line of code within the body of one of these, you must use a "pass" statement or else 
you'll run into a syntax error! 
 
Also, watch those non-English characters! Characters like é or chinese characters in your 
submission will cause your code to fail to run in the auto-marker, and you'll get a 0. 
 
Style 



The adherence of your entire modified e6.py (even the testing code) to the PEP8 style guide 
will count towards your grade. After you've implemented and tested your code, run the entire 
code (not just the function bodies) through the online style-checker provided in the Resources 
section of the course website and then fix all of the style errors it will no doubt find in your code. 
 
It may seem tedious to write according to the PEP8 style guide when Python will understand 
non-PEP8-compliant code just as well. But remember that when you're programming, you're 
programming for humans as well. Writing code which follows style conventions will help humans 
read it. And as you practice following these conventions, they will become habit and you might 
eventually find yourself doing it by default. 
 
Thus, the second last thing you should do before you submit is to run your entire code through 
the PEP8 style checker. The last thing you should do is the sanity check (see below). 
 
It is also a good idea to practice following the extra style guidelines from this document: 
https://docs.google.com/document/d/1QNoQ1Yt7QLk4vaKrQ8W5G0aDVw4ql6SlQhoQ394fW44
/edit?usp=sharing​
although we will not be grading for this on this exercise. 
 
Sanity check 
If nothing else, make sure your code runs without any errors (eg. syntax errors). Furthermore, 
make sure you can import your module within another file. 
 
In lecture, you've seen how easy it is to forget a bracket and end up with invalid Python code. 
Even the best programmers make these mistakes regularly. If the code you eventually submit 
has these kinds of errors, you will get a 0 on your exercise grade, no matter how well you did 
everything else! So the last thing you should do before you submit is a final sanity check to 
make sure you can at least run and import your code without any errors! 
 
What to hand in 
Submit your completed e6.py on MarkUs 
https://markus.utsc.utoronto.ca/csca20f18/?locale=en 
 

https://docs.google.com/document/d/1QNoQ1Yt7QLk4vaKrQ8W5G0aDVw4ql6SlQhoQ394fW44/edit?usp=sharing
https://docs.google.com/document/d/1QNoQ1Yt7QLk4vaKrQ8W5G0aDVw4ql6SlQhoQ394fW44/edit?usp=sharing
https://markus.utsc.utoronto.ca/csca20f18/?locale=en

