

Istio APIs Release Channels

Shared with Istio Community

Owner: Whitney Griffith (whitneygriffith)
Working Group: Test and Release, User
Experience

Status: WIP | In Review | Approved | Obsolete​
Created: Nov 16, 2023
Approvers: howardjohn[], mitchconnors[], ericvn[],
linsun[], louiscryan[],
Release Target: 1.22

Objective
To transition to a new, simplified release model for Istio APIs that allows the flexibility of
experimenting with new features, while still delivering a stable API.

Background

Key Motivations
1.​ Features within an Istio API exhibit varying levels of stability, leading to an independent

feature lifecycle distinct from that of the API version.
2.​ Istio APIs implemented as Kubernetes CRDs encounter a known challenge for

converting between API versions that have different schemas. Istio has chosen to
overcome this by enforcing identical schemas for all versions of the same CRD. This
created a new problem, where deprecated or unstable features are now present in all
CRD versions without any feature gating. In other words, an API version that indicates
stability is in fact misleading, as it contains unstable features that a user can apply at will.

3.​ Simplifying Istio APIs’ Feature Phases will incentivize developers to accelerate
conforming their features to stability standards while minimizing the Costs of API
Versions. At this time, in Istio we have Experimental, Alpha, Beta and Stable phases that
require substantial operational oversight to manage the progression or removal of
features within Istio APIs. The operational friction includes maintaining and enforcing at
least four graduation criterias, API versions, etc. to inform users whether an API is
unstable vs stable. Historically, we now have APIs in varying degrees of stability that are
stickily adopted by users due to necessity vs stability concerns.

https://github.com/whitneygriffith
https://blog.howardjohn.info/posts/crd-versioning/#version-conversion
https://github.com/istio/api/blob/master/GUIDELINES.md#basic-crd-versioning

Proposal

Release Channels
There will be an Extended and a Stable Channel that will be used to deliver the most current
Istio APIs and features.

The Extended Channel will be Istio as we know it today, where all existing APIs and API
features will be available regardless of stability, the superset.

The Stable Channel will deliver only the stable API and API features, the subset.

In this way, Release Channels allow us to add new fields and resources to Istio APIs while still
providing stable APIs and features through the Stable Channel.

Stable Channel
●​ Stability Assurance: The Stable Channel is curated to include only the parts of Istio

that have reached a stable, generally available (GA) state. This ensures reliability and
consistency for production environments.

○​ The APIs are stable as all features are stable.
●​ GA Features Only: Users selecting the Stable Channel can expect to access features

that have undergone thorough testing and validation, and are deemed suitable for use in
mission-critical applications.

○​ A Stable Channel API has v1 API versions served and only contains GA features.
In the Stable Channel non-GA features of an API will not be available for use.

○​ A non-GA API is graduated to the Stable Channel when there is a v1 version of
the API which represents a stable core of features.

●​ Risk Mitigation: Opting for the Stable Channel minimizes the risk of encountering
unexpected behavior or breaking changes, providing a dependable foundation for
deploying Istio in production environments.

○​ Only backwards-compatible changes allowed
■​ If Istio decides to take the API in a new direction with incompatible

changes to the existing v1 API, we strongly encourage creating a new
CRD with a new name, etc.

■​ Any backwards-compatible changes will be accessible when upgrading
Istio and will be noted in the changelog for the new Istio release.

○​ New fields will be added to the API with the releaseChannel:extended annotation
usable only in the Extended Channel. New fields will undergo its independent
graduation lifecycle until it is determined to be stable, v1.

Extended Channel

●​ Functionality Focus: The Extended Channel encompasses the entirety of Istio's
features, regardless of their current stage of development or stability.

●​ Inclusive of Extended Features: Users opting for the Extended Channel gain access to
all features offered by Istio, including those in the non-GA stage. This allows for early
adoption and testing of cutting-edge functionalities.

○​ Breaking changes allowed for non-GA features and APIs that have not been
graduated to v1.

■​ Extended features can have major changes that will lead to data loss if
not managed before upgrading

■​ These changes can be:
●​ Deprecating required and non-required extended fields
●​ Changing the data type of extended fields
●​ Changing validation rules of extended fields
●​ Renaming extended fields
●​ Changing default values of extended fields
●​ Changing field semantics where the meaning or the purpose of an

extended field is changed.
■​ Changes to an existing v1 field is not permissible

●​ Varied Stability Levels: Features in the Extended Channel may range from non-GA to
stable, providing a broad spectrum of capabilities to users who are willing to explore and
experiment with the latest advancements.

●​ Non-GA fields in v1 Kinds will be marked with the releaseChannel:extended
annotation usable only in the Extended Channel.

●​ Non-GA APIs will be marked with the releaseChannel:extended annotation
usable only in the Extended Channel.

●​ Messaging to users
○​ The Extended channel is only for those users who are willing to actively

shepherd their Istio deployments. You will potentially need to adjust your
Istio feature usage every upgrade to comply with the latest version of
these resources. This complexity will only increase as more
clusters/workloads are added to the mesh. Thread carefully.

○​ It will be relatively easy to go from Stable Channel to Extended Channel
and relatively harder to move from Extended Channel to Stable Channel
as Extended Channel is the superset.

API Management

API Versions
Each API version provides a unique way to interact with the API. For example, a user can
create a Custom Resource based on the v1alpha1 or a v1 version of the API.

Moving forward Istio API versions will ideally only be v1alpha1 and v1.

●​ New users will be guided to only use the v1 and v1alpha1 versions.

Existing users will not be forced to migrate until we remove the non v1alpha1 and v1 versions
they are currently using. Removal will follow the deprecation policy for the respective API
version’s feature phase and be directed based on our revision support requirements. At that
point, migration will involve upgrading existing objects to a new stored version and K8s will have
first class support to do this in k8s 1.30.

Existing APIs
The below table reflects the Release Channels, existing Istio APIs will be placed in.

APIs Stable Channel Extended Channel

AuthorizationPolicy ✔️ ✔️

DestinationRule ✔️ ✔️

EnvoyFilter ✔️

Gateway ✔️ ✔️

PeerAuthentication ✔️ ✔️

ProxyConfig ✔️

RequestAuthentication ✔️ ✔️

ServiceEntry ✔️ ✔️

Sidecar ✔️ ✔️

Telemetry API ✔️
A subset of the
v1alpha1 Telemetry
API will be added to
Stable Channel as
proposed here

✔️

https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#upgrade-existing-objects-to-a-new-stored-version
https://www.kubernetes.dev/resources/release/
https://docs.google.com/document/d/16A-E-30txN5Y2V_9qrDNpVC3lT7P6aa_3Qdg6_4t5Sg/edit#heading=h.ay0eigmagekt

API Lifecycle
The criteria for graduation and removal of features and APIs will follow our official Istio
Graduation Policy defined here. We are also proposing additional graduation and deprecation
criteria for APIs. The ability to limit the length of time an API or feature stays in the Extended
Channel will be dependent on Istio’s overall Enhancement Strategy to drive up and out
momentum of features.

VirtualService ✔️ ✔️

WasmPlugin ✔️

WorkloadEntry ✔️ ✔️

WorkloadGroup ✔️ ✔️

https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions
https://docs.google.com/document/d/1LvgamIDZ_nHUVkp2Aqgrdxsmh6N6ZnIeeBV-5uryRWo/edit#heading=h.v544s7vgn3bs

New APIs & Fields
1.​ New Istio resources will be created as a v1alpha1 API in the Extended Channel.
2.​ Once there is a stable core of features in the v1alpha1 API, a v1 API version will be

created according to the Graduation criteria and will become available in the Stable
Channel.

3.​ Both the v1alpha1 and v1 version of the API will continue to exist until TBD.
4.​ If new, non-GA features are being introduced to the API, a releaseChannel:extended

annotation will be added to the field in the v1 and v1alpha1 API versions. The CRD
generation tooling will be modified such that when generating the CRDs for the Stable
Channel, any fields with this annotation will be excluded, but when building Extended
Channel CRDs these non-GA fields will be included in addition to all stable fields for a v1
resource.

5.​ When a non-GA field is determined to be stable according to the Graduation criteria, the
releaseChannel:extended annotation will be removed and the field will be available in
the Stable Channel.

6.​ If a non-GA resource or field is determined to be unsuitable for promotion, it will be
deprecated accordingly and eventually removed in a future release.

Implementation
Tracking Issue: https://github.com/istio/enhancements/issues/173

Validating Admission Policy
Kubernetes has a Validating Admission Policy (Beta) that offers a declarative, in-process
alternative to Validating Admission Webhooks.

Validating Admission Policies use the Common Expression Language (CEL) to declare the
validation rules of a policy. Validation admission policies are highly configurable, enabling policy
authors to define policies that can be parameterized and scoped to resources or features as
needed by cluster administrators. Configurations of the API that violate the Validating Admission
Policy causes the API request to fail.

As such, the Release Channels logic will be implemented as a Validating Admission Policy,
where the sole use of stable APIs and features in the Stable Channel will be enforced using a
Validating Admission Policy.

Istio will provide a Validating Admission Policy to be used for the Stable Channel based on the
stability of each API and API Feature. Vendors and users are able to further customize the
Stable Channel Validating Admission Policy or add additional Validating Admission Policy for
their feature scoping needs.

1.​ Defined Admission Policy Rules:
a.​ Validating Admission Policy rules are created to enforce the constraints specified

for the Stable Channel based on stability. That is, the policy will ensure only
stable APIs and features are used.

2.​ Admission Controller Configuration:
a.​ Users opt in to the Stable Channel when installing or upgrading Istio and in so

doing, the Kubernetes Admission Controller is configured to use the Validating
Admission Policy.

b.​ The Validating Admission Policy is compatible with revision upgrades in Istio
3.​ Rule Evaluation:

a.​ When a resource creation or update request is made to the Kubernetes API
server, the Admission Controller intercepts the request and evaluates it against
the Stable Channel Validating Admission Policy rules.

b.​ Requests will be allowed or rejected based on the result of the evaluation.
c.​ If the request is rejected, users will be provided clear feedback about why their

requests were rejected.

The first iteration of the Stable Channel Validating Admission Policy will be manually configured
with the aim of automating configuring the policy rules based on changes to the APIs.

https://github.com/istio/enhancements/issues/173
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/

Decisions

v1beta1 APIs
1.​ Deprecate the v1alphaX versions and update Istiod to read the v1beta1 resource
2.​ Add v1beta1 resource to the Extended Channel as is
3.​ Create a v1 version of the resource in the Extended Channel for all APIs but

ProxyConfig
4.​ Deprecate v1beta1 resource feature

a.​ Based on our Beta Deprecation Policy, the v1beta1 version can be removed with
3 months of advanced notice.

b.​ ProxyConfig deprecation plan will also contain revisiting the experimenting
ProxyConfig annotations and providing an alternative based on user feedback

v1alpha1 version in Stable
Should we have v1alpha1 API versions in the Stable Channel?

Consensus: Yes

Considerations Alternatives

Reduces breakage when upgrading Istio and
Switching between release channels

Users have to migrate the old CRs before
upgrading.
https://kubernetes.io/docs/tasks/extend-kuber
netes/custom-resources/custom-resource-def
inition-versioning/#previous-storage-versions ​
​

Serving an Alpha version in Stable Channel
feels weird even if extended features are
stripped. However, we can overcome this by
ensuring our Users are aware of our API
versioning constructs.

Drop the Alpha version and mitigate
breakage when upgrading Istio or switching
release channels

Removal of v1alpha1
Once an extended resource has been graduated to the Stable Channel, after several releases,
the extended v1alpha1 API version could be removed. If there are future extended fields, those
will be added to the v1 version of the resource, which will only be available in the Extended
Channel.

https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#previous-storage-versions
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#previous-storage-versions
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#previous-storage-versions

Consensus: No, we should not remove v1alpha1 API

Considerations Alternatives

If v1alpha1 is removed, users that have not
migrated to v1 will be broken.

The ease of migrating to v1 may not be worth
the removal.

https://github.com/istio/istio/pull/49583#pullre
questreview-1904399360 ​
​

Migration will involve upgrading existing
objects to a new stored version and K8s will
have first class support to do this in k8s 1.30.

When there’s first class support for migration,
we can reconsider the value/effort tradeoff.

Default Channel
The optimistic transition of channel defaults will be Extended Channel -> Stable Channel.

Implementation Choice
Validating Admission Policy is preferred over the Multiple CRDs approach because:

1.​ Validating Admission Policy implements Release Channels as a layer on top of existing
Istio, requiring minimal changes to Istio and the overall User Flow for installation and
upgrades.

2.​ Revision based upgrades are compatible with Validating Admission Policy.
3.​ Validating Admission Policy is easier for users and vendors to customize while still

keeping Istio API versions the same.

https://github.com/istio/istio/pull/49583#pullrequestreview-1904399360
https://github.com/istio/istio/pull/49583#pullrequestreview-1904399360
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#upgrade-existing-objects-to-a-new-stored-version
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#upgrade-existing-objects-to-a-new-stored-version
https://www.kubernetes.dev/resources/release/

Transition
As we transition to this model we will ensure the following:

●​ The API versions and guarantees will stay valid and be honored for all existing APIs.
●​ The old API framework (APIs, implementation) will continue to exist alongside the new

model for the foreseeable future. The old API framework will be considered the
Extended Channel and this will be the default channel for the foreseeable future. After
which, we can pursue making Stable Channel the default channel, where users are
consciously opting into a more extended, robust Istio.

●​ v1beta1+ APIs will be added to the Stable Channel, and work will be done to remove
the v1beta1 API versions so we can eventually have only v1 APIs available throughout
Istio. See decision here.

●​ Additional work will need to be done to clean up Existing APIs to get to our optimal state
of only v1alpha1 and v1 API versions.

●​ New API and API Feature development should be done using the API Lifecycle
Guidelines.

Additional thoughts:

●​ Will need to integrate with other Istio versioning work.

Roadmap

1.​ Adopt Release Channels for Istio APIs
2.​ Update Istio Feature Phases Graduation Criteria
3.​ Graduate Telemetry API to Stable Channel based on existing Graduation Criteria
4.​ Integrate with other Istio versioning work

a.​ Rolling out the Stable vs Extended concept to all Istio Features
5.​ Graduate Common APIs between Ambient and Classic
6.​ Improve Release Channels based on Feedback from Release Managers, Users, Etc.

Addendum

Graduation Criteria
This is the proposed additions to be made to the official Istio Graduation Policy for APIs
specifically.

For an API to graduate to Stable Channel, it must meet the following criteria:

●​ The core of the API is stable
●​ Full conformance and integration test coverage.

○​ Integration tests cover edge cases as well as common use cases. Integration
tests cover all issues reported on the feature. The feature has end-to-end tests
covering the samples/tutorials for the feature.

○​ We do not track code coverage atm, but can include a baseline when Istio adopts
code coverage tracking.

●​ At least two release cycles in the Extended Channel.
●​ No major changes (i.e. no design or behavioral changes) for at least two release cycles.
●​ Approval from the working group leads + reviewers.
●​ Approved Enhancements Feature Checklist

For a field or feature to graduate from Extended to Stable, it must meet the following criteria:

●​ Full conformance and integration test coverage.
●​ At least two release cycles in the Extended Channel.
●​ No major changes (i.e. no design or behavioral changes) for at least two release cycles.
●​ Approval from the working group leads + reviewers.
●​ Approved Enhancements Feature Checklist

​Runtime Compatibility

https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions
https://github.com/istio/enhancements/blob/master/features/feature_template.md
https://github.com/istio/enhancements/blob/master/features/feature_template.md

After a feature has spent at least two release cycles in the Extended Channel:
●​ The Feature owner is required to evaluate if there are any changes that can help

stabilize the feature or increase adoption.
○​ An issue will be created to re-evaluate Feature
○​ Feature owners will be assigned to issue and be pinged in relevant slack channel
○​ Discussion items will be highlighted in combined working group meeting

●​ If there aren’t any changes that can help or interest to make those changes within four
additional release cycles, the deprecation process will be triggered for the extended
feature. This is contingent on Istio being able to oversee and maintain up and out
momentum of features

●​ If there are changes to be made, the Feature Owner will create issues and update the
Feature Checklist to track these specific requirements for graduating the feature to
Stable.

●​ After all requirements are completed, the Feature Owner will be able to mark this feature
as ready to be graduated.

●​ If there are no major changes (i.e. no design or behavioral changes) in the next two
release cycles, after being marked for graduation, the feature will be graduated to the
Stable Channel.

●​ If there are major changes during the next two release cycles, after being marked for
graduation, the Feature Checklist should be updated, and a new target graduation date
of the next two release cycles is set based on the completion of work.

The above can be streamlined using tools (Github and Slack integrations) and included as part
of the Release Manager duties.

https://github.com/istio/enhancements/blob/master/features/feature_template.md
https://github.com/istio/enhancements/blob/master/features/feature_template.md

Deprecation Criteria
This is the proposed additions to be made to the official Istio Deprecation Policy for APIs
specifically.

For a field or feature to be deprecated from the Extended Channel, v1alpha1 API, it must meet
the following criteria:

●​ Documentation around any potential data loss risks during version conversion is
captured. This can be guarded by testing conversion between the current v1alpha1 API
and the new v1alpha1 API in a controlled environment.

●​ Sharing additional guidance on identifying and addressing any issues proactively is
highly encouraged but optional.

Costs of API Versions
Each additional API version we support comes with increased costs to API maintainers,
implementers, and users.

Istio API Maintainers:
●​ Maintain separate type definitions and generated code for each API version
●​ Deprecate and eventual remove stale features and unstable API versions
●​ Provide explicit upgrade requirements

Istiod Maintainers
●​ Handle breaking changes on upgrades
●​ Test all supported API versions
●​ Deprecate and remove support for stale features and unstable API versions
●​ Store the latest API version in etcd
●​ [TBD] Support multiple API versions based on what version is installed

○​ Istiod currently only reads the oldest CRD version
○​ This is a change from how Istiod operates today

Users
●​ Upgrade all manifests to use latest API versions
●​ Specify the API version to store in etcd
●​ Specify the API versions accepted

https://istio.io/latest/docs/releases/feature-stages/#feature-phase-definitions

CRD Versioning in Kubernetes

Personas

Istio maintainers
Want to clearly indicate both API stability expectations and direction of future investment or
maintenance-only/deprecation tracks for vendors, platform teams and end users. Existing usage
of “feature phase” definitions hasn’t been sufficient to accomplish these goals, in part from a
lack of “up or out” momentum with widely-adopted APIs languishing as v1beta1 CRDs, but also
from constraints of an inflexible CRD versioning model - because Istio (like many projects using
CRDs) has opted to not use a conversion webhook, all versions must be identical.

Vendors
Sell products built on top of the open source Istio project, which may include additional
functionality or provide a managed offering. May alter implementation details (such as a
managed control plane or custom Ambient waypoint implementation), but generally aim to
adhere to public APIs consistent with the upstream open source project. May want to block
some features their operations or support teams don’t feel comfortable supporting or enable
experimental features their users are demanding.

Platform teams
Internal team in an organization which owns core services and may offer “service mesh as a
service” to internal application development teams to run and connect their services. May build
abstractions over standard Istio APIs to ease adoption for developer teams or enforce best
practices. May want to offer a more prescriptive “guided path” with only a limited set of
functionality exposed to app dev teams, but still want direct control over more advanced
functionality and need to understand anticipated support and stability to know what to expose to
their customers.

End users
Confused by arbitrary vendor decisions around supported APIs and want to easily understand
how to accomplish common tasks with Istio. May feel confused by having too many decision
points when onboarding (Gateway API vs Istio APIs? Sidecar vs Ambient?) and don’t
understand why configuration snippets from Stack Overflow don’t work as expected with their
specific installation.

Background and possible solution space

Similar tradeoffs as brought up in https://github.com/cilium/cilium/issues/29676 between user
expectations and vendor needs. Starting point for conformance? Is that desirable/necessary?

https://istio.io/latest/docs/releases/feature-stages/
https://blog.howardjohn.info/posts/crd-versioning/
https://github.com/cilium/cilium/issues/29676

●​ Field-level stability
○​ Istio expects to already have a need for field-level granularity in the future for

Gateway API extended conformance fields we may opt to not support.
○​ Controller decides, report in status likely more aligned with expectations than

admission controller
■​ Costin “Btw - if user has multiple revisions of istiod, one for select

workloads using extended features and one default on stable
■​ Which is a good approach for suppotability
■​ Meaning only a small known set of workloads can use experimental
■​ That doesn't work with either crd version or admission

●​ “v1 is forever”

○​ “I don't think versions solve this. One way I saw it phrased was basically
"Kubernetes versions solve the problem of representing *the same information*
in a different syntax, not representing different information"

●​ Approaching this from a different point in time than Gateway API
○​ Gateway API: “everything experimental, start graduating subset”

■​ Has considered possibility of adding a third, “stable” release channel at
some future point as API evolves if need arises

○​ Istio: widely-adopted “effectively stable” API, recognized patterns for stability of
new resources and changes, want to reflect status quo end user expectations of
stability

■​ May want an additional more-experimental channel in the future
●​ WASM truly experimental, EnvoyFilter inherently unstable
●​ Annotations and mesh config not included
●​ “too experimental to get user usage” has felt like less of an issue in Gateway API, where

vendors are building and offerings features which are still experimental and users asking
for more functionality - Kubernetes core is largely held back by that decision being in the
hands of distributors and not end users

Storage Version
Read more about versions in CRDs:
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitio
n-versioning/

In Kubernetes Custom Resource Definitions (CRDs), the `storage` field within the `versions`
block indicates whether a particular version of the custom resource is stored in the cluster's etcd
database.

Setting `storage: true` means that instances of this version of the custom resource are persisted
to etcd. This allows Kubernetes to store and manage resources of this version in a manner
similar to built-in resource types like Pods or Deployments.

https://github.com/kubernetes-sigs/gateway-api/discussions/1172
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/

When you set `storage: true`, Kubernetes ensures that the API server can store, retrieve, and
manage instances of this version of the custom resource. This enables operations such as
creating, updating, deleting, and querying resources of this version through the Kubernetes API.

Conversely, if you set `storage: false`, instances of this version of the custom resource are not
stored in etcd. This might be useful in scenarios where you have a version of the resource that
is only meant for serving data to clients via the Kubernetes API but does not need to be
persisted in the cluster's data store.

In summary, setting `storage: true` allows instances of the specified version of the custom
resource to be stored in the cluster's etcd database, enabling Kubernetes to manage them like
built-in resource types.

When a Custom Resource Definition (CRD) in Kubernetes has multiple versions, with only one
version marked as `storage: true`, and a resource of a different version is created, Kubernetes
handles it differently depending on the configuration and behavior of the API server.

Here's what typically happens:

1.​ **Resource Creation**: When a resource of a non-storage version is created, the
Kubernetes API server will still accept and validate the request, assuming the request
adheres to the schema of the non-storage version.

2.​ **Storage**: Despite the resource being of a non-storage version, the API server still
writes the resource's data to etcd. However, it may not be fully indexed or searchable in
the same way as resources of the storage version.

3.​ **Compatibility**: The API server usually tries to maintain compatibility by storing the
data in a way that allows it to serve requests for both storage and non-storage versions.
However, the behavior may vary depending on the specifics of the Kubernetes version
and configuration.

4.​ **Limitations**: While the resource may be stored, it might not have the same level of
management and indexing as resources of the storage version. For instance, it may not
be subject to the same consistency guarantees, or it may not be included in certain types
of queries or operations.

5.​ **Considerations**: It's essential to carefully consider the implications of having multiple
versions with different storage configurations. Mixing storage and non-storage versions
can lead to complexities in managing and querying resources, and it may impact
performance or consistency guarantees.

In summary, when a custom resource version isn't the storage version, the Kubernetes API
server still stores the resource's data in etcd, but the behavior and management of that data
may differ from resources of the storage version.

Design Considerations
1.​ Extended features can only be promoted to Stable when new Stable API versions are

released. We may need to be prescriptive on the criteria and timeline for new Stable API
versions to facilitate the reasonable batching of the extended features to be promoted.

2.​ End users might be hesitant to embrace extended features due to the absence of
support guarantees, making the process of obtaining feedback and conducting testing
more challenging.

3.​ Does this actually solve converting between API versions that have differences in their
schema? What else is needed to solve this?

4.​ Graduation criteria for promoting a Extended feature to Stable must be clearly defined,
easily measured and adopted across Istio.

5.​ How unstable is the Extended Channel?
a.​ Backwards incompatible Schema changes

6.​ As the API versions don’t change (always v1 or v1alpha1), how will users know what
iteration of the API Version they are using?

7.​ As Istio is an existing project, there are migration challenges.
8.​ There are implicit semantic version assumptions that need to be considered. What are

they? Is it cross cutting and can be solved with Compatibility Versions?
9.​ How do we track features/behaviors that are cross cutting functionality touching multiple

CRDs? Re: comment.
10.​Would installing just one Extended Channel CRD to test a new field on a v1

stable/extended resource be an allowed/expected user workflow? (This is a bit awkward
in the Gateway API last I checked, where installing all CRDs from the same Channel is
the behavior facilitated by the documentation.) See comment here

a.​ Based on allowing Istio users more flexibility, yes we should allow and streamline
installing CRDs from a different Channel regardless of the default Channel used
for all APIs.

11.​Is the stability of Extended Channel worse than the stability of Alpha and below APIs in
the legacy model?

https://docs.google.com/document/d/1ZSJKwDsfZ71vNL9jxl8mOywmfwh-kLDvc1NcQK3RjHk/edit#heading=h.xw1gqgyqs5b
https://docs.google.com/document/d/1onST4-swbZE1UPCDMQm1c7T5rzYEn7Wo4uFNShz0kNw/edit?disco=AAABBa9TLVQ
https://docs.google.com/document/d/1onST4-swbZE1UPCDMQm1c7T5rzYEn7Wo4uFNShz0kNw/edit?disco=AAABBa9TLOY

Alternative Approaches

Multiple CRDs

API Versions
Typically, an API version is the only semantic reference needed to inform the user of the
expected features and behavior of that iteration of the API. This is the case for the v1 API
versions in all Release Channels.

However, we need to extend this reference to effectively allow the flexibility of experimenting
with new features while still delivering a stable API. In this regard, the Extended Channel
v1alpha1 API version differs from the Stable Channel v1alpha1 API version, as the non-GA
features in the v1alpha1 API version are not included in the Stable Channel. This is a
workaround for the operational inadequacy of Kubernetes CRD version management and our
users must be clearly aware of this.

We will guide users with:

●​ Thorough documentation and easy association of CRD to target Release Channel
○​ An annotation to the CRD that denotes which Istio version it was released in and

channel it is designed to work with

istio.io/istio-version: v1.2.2
istio.io/channel: stable

●​ Error feedback for known issues that users may encounter when attempting to use a
Extended Channel v1alpha1 API in the Stable Channel. For instance, if the user is
attempting to use a non-GA field in the Stable Channel.

Istio Releases
As v1 and v1alpha1 resources can change between Istio Releases, installed CRDs are tightly
coupled to the installed Istio version. For example, "I'm using the Extended Channel
telemetry/v1alpha1 CRDs from Istio 1.21".

As such, users using the Extended Channel must pay close attention to the Release Notes for
guidance on steps to take before upgrading to minimize data loss.

User Flow
1.​ User installs Istio specifying the target release channel, the Extended Channel will be

installed by default.
a.​ We can explore eventually making the Stable channel the default so new users

can explicitly opt into using more robust Istio features, by switching to the
Extended Channel

b.​ This is implemented in Helm
2.​ CRDs for target release channel are installed. These CRDs contain all supported

versions, v1alpha1 and v1, but with different schemas based on the release channel.
3.​ User creates CRs that conforms to the schema of the installed CRD versions for target

release channel.

Scenarios
●​ When a non-GA field is removed from a resource in the Extended Channel

○​ Users must remove their usage of the field before upgrading. An analyzer should
be created for this. Only once usage is removed, the user should upgrade their
Istio base helm chart. The order is important here because the latest CRD
version must be the stored version to prevent data loss (e.g. in the case of an
added field). If usage isn't removed before upgrading to a CRD version where the
field does not exist, all of the CRs in etcd will have that field dropped creating
unpredictable runtime behavior (imagine all your timeouts being deleted for
example).

○​ Recommend upgrading with canary revision strategy
https://istio.io/v1.16/blog/2021/revision-tags/

●​ When a user wants to migrate from the Extended Channel to the Stable channel
○​ Changing from Stable Channel to Extended Channel is relatively easier than

going the reverse way. Similar to above, the user will be required to update their

https://istio.io/v1.16/blog/2021/revision-tags/

usage of non-GA fields before switching to the Stable Channel to prevent data
loss.

○​ However, Kubernetes will actually persist unknown fields in CRs if you change to
a different schema. This behavior is controlled by
x-kubernetes-preserve-unknown-fields: true. At this time, we have
x-kubernetes-preserve-unknown-fields: false

●​ Removal of a resource in the Extended Channel as it is not widely used and not working
well

●​ When a User wants to use the Stable Channel with a specific extended/non-GA
resource/field.

○​ Would installing just one Stable Channel CRD to test a new field on a v1 stable
resource in the Extended Channel be an allowed/expected user workflow?

○​ A custom CRD chat can be created and used in the Base Helm Chart

Release Channels
Represented as an OpenAPI generated YAML file that contains all CRDs and its relevant API
versions for each channel.

As of now, a customresourcedefinitions.gen.yaml containing all Istio APIs and API versions
exists and is used to install all CRDs.

We are proposing generating one for each channel, for example, extended.gen.yaml and
stable.gen.yaml.

Upon installation (helm or istioctl), one of these YAML files will be used to install Istio CRDs
according to the set channel. The base Helm chart values will be modified to facilitate selecting
the right YAML based on user configuration.

In summary, each CRD will be configured based on the below table:

 Stable Channel Extended Channel

YAML File stable.gen.yaml extended.gen.yaml

Stored version of
CRDs:

v1alpha1 without non-GA
fields

v1alpha1 with non-GA
fields

Served version of
CRDs:

v1alpha1 without non-GA
fields and v1

v1alpha1 with non-GA
fields and v1

All channels will be aware of all API versions. However, the v1alpha1 API versions in the Stable
Channel differ from the ones in the Extended Channel by the exclusion of non-GA fields. A user
will need to be explicitly aware that they are using a v1alpha1 Stable Channel CRD vs v1alpha1

https://kubernetes.io/blog/2019/06/20/crd-structural-schema/#extensions
https://github.com/istio/api/blob/master/kubernetes/customresourcedefinitions.gen.yaml
https://github.com/istio/istio/blob/master/manifests/charts/base/templates/crds.yaml

Extended Channel CRD. We will add relevant tooling to surface typical errors that may occur
based on this.

The below table shows a more granular view of the end state of what happens to each CRD in
Istio, factoring the removal of versions may take several releases.

 Stable Channel Extended Channel

YAML File stable.gen.yaml extended.gen.yaml

CRDs

AuthorizationPolicy Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
dropped

DestinationRule Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated

v1alpha3 is deprecated

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel

EnvoyFilter Stored version: v1alpha3 ​
​
Served version: v1alpha3

Gateway Stored version: v1​
​
Served version: v1

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

PeerAuthentication Stored version: v1 ​
​
Served version: v1
Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

ProxyConfig Stored version: v1beta1​
​
Served version: v1beta

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel.

RequestAuthentication Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
deprecated.

ServiceEntry Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel.

Sidecar Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel

Telemetry API Stored version: v1alpha1
without non-GA fields​

Served version: v1 as proposed
here, v1alpha1 without non-GA
fields

Stored version: ​
v1alpha1 with non-GA fields

Served version:
v1alpha1 with non-GA fields, v1

VirtualService Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel

WasmPlugin Stored version: v1alpha1 ​
​
Served version: v1alpha1

WorkloadEntry Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

Proposed changes: v1alpha3 is
deprecated and will not be
introduced to Extended Channel

WorkloadGroup Stored version: v1 ​
​
Served version: v1

Proposed changes: v1beta1 is
promoted to v1.

v1beta1 is deprecated.

Theoretical v1 CRD with
Extended Fields, no v1alpha1
exists

Stored version: ​
v1 without non-GA fields

Served version:
v1 without non-GA fields

Stored version: ​
v1 with non-GA fields

Served version:
v1 with non-GA fields

https://docs.google.com/document/d/16A-E-30txN5Y2V_9qrDNpVC3lT7P6aa_3Qdg6_4t5Sg/edit#heading=h.ay0eigmagekt

CRDs

Each API is defined as Proto Definitions in the istio/api as v1alpha1 and/or v1 versions.

Annotations in the form of comments will dictate CRD generation per channel.

Extended resources will be annotated to inform the generator of its target, Extended Channel.

// +cue-gen:EnvoyFilter:releaseChannel:extended

Extended fields in the v1 and v1alpha1 resources will be denoted with a
releaseChannel:extended annotation.

// +cue-gen:Telemetry:releaseChannel:extended
map<string, CustomTag> custom_tags = 5;

Istiod
Based on the proposed design above, Istiod will be configured to read the Extended Channel
v1alpha1 of each CRD, which will be the superset of all supported API features.

Helm
Helm provides several ways to manage Custom Resource Definitions (CRDs) in your
deployment:

1.​ By placing CRDs in the CRDs directory of the chart.
a.​ Helm will install CRDs from the `crds` directory before installing the rest of the

chart. This ensures that the CRDs are installed in time for any resources that
might need them.

b.​ Helm does not apply any templating to files in the `crds` directory. This means
you can't use Helm's templating features to customize the CRDs based on
values.

c.​ Helm does not manage the lifecycle of CRDs installed this way. It will not
upgrade or delete them when you upgrade or delete a release.

d.​ The --skip-crds flag is effective in this scenario.
2.​ By managing CRDs as a Helm Template in the `templates` directory.

a.​ Helm treats CRDs in the templates directory like any other resource. This means
they are included in the Helm release and can be installed and upgraded along
with the rest of the resources in the chart.

b.​ The --skip-crds flag is ineffective in this scenario.
c.​ You can use Helm's templating features to customize the CRDs based on values.
d.​ If a CRD is installed as a template, it might not be installed in time for other

resources that need it. This can cause errors if other resources are created
before the CRD is installed.

https://github.com/istio/api
https://helm.sh/docs/chart_best_practices/custom_resource_definitions/#method-1-let-helm-do-it-for-you

3.​ By managing CRDs as a Pre-Install Hook in the `templates` directory.
a.​ A pre-install hook is best if the CRDs are tightly coupled with your application and

are always needed before installing or upgrading the application.
b.​ Pre-install hooks run before any other templates are loaded. This ensures that

your CRDs are installed and ready before any other resources are created.
c.​ Resources created via hooks are not managed as part of the Helm release

lifecycle. This means they won't be upgraded or deleted when the Helm release
is upgraded or deleted.

4.​ By using a separate chart for the CRDs
a.​ Use a separate chart if the CRDs are used by multiple applications or charts.

This allows you to manage and version your CRDs independently.
b.​ However, managing CRDs in a separate chart can add complexity, as you'll need

to ensure that the CRD chart is installed before any charts that use those CRDs.

Our Design:

●​ CRDs will be managed as a Pre-Install Hook in the `templates` directory.
●​ CRDs will be skipped on helm upgrade as upgrading CRDs should be done manually, or

through an Istio provided tool to ensure existing resources aren’t broken. This is mainly
an issue when upgrading in the Extended Channel and when moving from the Extended
Channel to the Stable Channel.

Istiod Schema Collections

In Istiod, there is a concept of collections, which represents different permutations of APIs to be
consumed by Istiod based on user configuration. For instance, if the user enables Gateway API,
Pilot will consume a collection that includes the stable Gateway API.

Extending on this concept, a Stable Collection will be created to represent the Stable Channel
which will be enabled using an environmental variable/feature flag on installation.

The collection for the Stable Channel may look like the following:
// PilotStableChannel contains only stable collections used by Pilot including the

full Gateway API.

pilotStableChannel = collection.NewSchemasBuilder().

 MustAdd(AuthorizationPolicy).

 MustAdd(DestinationRule).

 // unstable. remove or mark as exception due to it being legacy

 MustAdd(EnvoyFilter).

 MustAdd(Gateway).

 MustAdd(GatewayClass).

 MustAdd(HTTPRoute).

 MustAdd(KubernetesGateway).

https://github.com/istio/istio/blob/f09010c6c5994d8ce945262867f5682fa082447f/pkg/config/schema/collections/extras.go#L25
https://github.com/istio/istio/blob/f09010c6c5994d8ce945262867f5682fa082447f/pkg/config/schema/collections/collections.gen.go#L845

 MustAdd(PeerAuthentication).

 MustAdd(ProxyConfig).

 MustAdd(ReferenceGrant).

 MustAdd(RequestAuthentication).

 MustAdd(ServiceEntry).

 MustAdd(Sidecar).

 // need to be graduated to stable

 MustAdd(Telemetry).

 MustAdd(VirtualService).

 // unstable. remove or mark as exception due to it being legacy

 MustAdd(WasmPlugin).

 MustAdd(WorkloadEntry).

 MustAdd(WorkloadGroup).

 Build()

The environment variable/feature flag may look like the following:
EnableStableChannel = env.Register("PILOT_ENABLE_Stable_CHANNEL", true,

 "If this is set to true, support for Stable Channels will be enabled. In

addition to this being enabled, the Stable Channel CRDs need to be installed.").Get()

Notes from 4/11 TOC meeting

Keith Mattix
9:08 AM
https://github.com/istio/istio/pull/50358
Eric Van Norman
9:08 AM
https://github.com/istio/istio/pull/50358
Costin Manolache
9:19 AM
We already have the v1
That's clear
The only issue is new stuff we might add to v1
Costin Manolache
9:20 AM
For new CRs that we may add - assuming we follow the pattern in Gateway (and we should since new CRs should
work with ambient and gateway) - no problem
Whitney Griffith
9:20 AM
Its captured in Scenarios here
https://docs.google.com/document/d/1onST4-swbZE1UPCDMQm1c7T5rzYEn7Wo4uFNShz0kNw/edit#heading=h.p
4568phsujd6
John Howard
9:21 AM
I thought we were planning to move everything to v1
Costin Manolache
9:21 AM
We should stop 'moving without change'
Keith Mattix
9:21 AM
The only non-v1 things are WasmPlugin and EnvoyFilter. A (large) subset of Telemetry is v1 but it is a strict subset
Costin Manolache
9:22 AM
That's the fundamental problem. Experimental is not reviewed as a v1, and no changes are possible
John Howard
9:22 AM
@Costin I don't think GW is going with the "Separate name for experimental" btw. It was a proposal by Rob that got
-1'd by most of the community
Mike Morris
9:23 AM
we _could_ reintroduce (or add later if needed) a separate Experimental channel to allow more flexibility in breaking
changes
John Howard
9:24 AM
``` 
  matchResources: 
    namespaceSelector: 
      matchLabels: 

https://github.com/istio/istio/pull/50358
https://github.com/istio/istio/pull/50358


 

        istio.io/rev: bar 
``` 
Costin Manolache
9:25 AM
Revisions are not really for users but vendors
John Howard
9:27 AM
If only GCP's mesh supported revisions :-)
Costin Manolache
9:27 AM
That doesn't mean we should keep the alpha approach.
We can still have a separate CRD for each experimental feature
Mike Morris
9:28 AM
agree that revisions are important - im trying to understand more where the conflict between revisions and CRD
channels would be, i dont think i quite get the issue there yet
Costin Manolache
9:28 AM
For example EnvoyFilter or Wasm could be in a different space instead of istio.io
For revision you need canary to have the new stuff
Costin Manolache
9:30 AM
It's really not just upgrade - for example you may want envoyfilter or wasm for a very small controlled set of
workloads
Keith Mattix
9:31 AM
We need some messaging for Telemetry but I think I'm cool with tthat
Costin Manolache
9:37 AM
Not so novel. ServiceExport
Mike Morris
9:39 AM
@mitch https://github.com/kubernetes-sigs/gateway-api/pull/2912
Justin Pettit
9:39 AM
Sorry, I need to drop for another meeting.
Mike Morris
9:39 AM
https://github.com/kflynn/k8s-versioning has some good context too, which covers similar ground as a blgo post
John wrote a while back https://blog.howardjohn.info/posts/crd-versioning/
John Howard
9:40 AM
FWIW I disagree with a lot of the opinions part from Flynn there ^. But good info
Keith Mattix
9:43 AM
Decision for 1.22:
1. Add support for revisions to my draft PR
2. Add helm value (under experimental or something) for enabling channels (opt-in_
3. Create docs for users indicating that channels will be default in the future
Whitney Griffith
9:43 AM
Thanks for all the feedback!

https://github.com/kubernetes-sigs/gateway-api/pull/2912
https://github.com/kflynn/k8s-versioning
https://blog.howardjohn.info/posts/crd-versioning/

Keith Mattix
9:44 AM
4. Add Alternatives Considered section to Release channels doc
3* - Create docs for users indicating that we hope channels will be default in the future pending feedback
Whitney Griffith
9:45 AM
I agree with that as well Mitch! Thank you!

References
Thinking about alpha/beta/GA in k8s (public)
[SIG-NETWORK] Phasing Out Beta From Gateway API
CRD Upgrades are Easy to Get Wrong

https://docs.google.com/document/d/1roVAHyF7eWZAccmCKw7MXYUNgx4BCDSXF2IMS8h10oY/edit?resourcekey=0-x6Tw2qz1SpCIPhbec6Qa2A
https://docs.google.com/document/d/1uZEhliv1SoQQIi2c6Wmz_n5wYMjwE9Eyr5-mW7OFDYU/edit
https://static.sched.com/hosted_files/kcsna2022/75/KubeCon%20Detroit_%20Building%20a%20k8s%20API%20with%20CRDs.pdf#page=15

	
	Objective
	Background
	Key Motivations

	Proposal
	Release Channels
	Stable Channel
	Extended Channel

	API Management
	API Versions
	Existing APIs
	
	
	
	API Lifecycle
	

	New APIs & Fields
	

	Implementation
	Validating Admission Policy

	Decisions
	v1beta1 APIs
	v1alpha1 version in Stable
	Removal of v1alpha1
	Default Channel
	Implementation Choice

	
	Transition
	Roadmap
	Addendum
	Graduation Criteria
	

	Deprecation Criteria
	Costs of API Versions
	Istio API Maintainers:
	Istiod Maintainers
	Users

	CRD Versioning in Kubernetes
	Personas
	Istio maintainers
	Vendors
	Platform teams
	End users

	Background and possible solution space

	Storage Version
	Design Considerations
	
	Alternative Approaches
	Multiple CRDs
	API Versions
	Istio Releases
	User Flow
	Scenarios
	Release Channels
	
	CRDs
	Istiod
	Helm

	Istiod Schema Collections

	
	Notes from 4/11 TOC meeting

	References

