
SIP Proposal

Boolean pattern matching expressions
Johannes Rudolph (johannes.rudolph@gmail.com)
Mathias Doenitz (mathias@spray.io)

31 October 2012 Initial version

Introduction

Pattern matching is a versatile syntactic element in Scala used to match and deconstruct a
compound value and (optionally) extract its elements.
One common use case is to check if some value matches a given pattern and to provide the
result of the check as a boolean value. This can be expressed straightforwardly by a pattern
matching expression consisting of one case clause containing the “subject” pattern evaluating to
`true` and a fall-back case clause matching everything else evaluating to `false`. For example:

val x: List[Option[String]] = // ...

val matches =
 x match {
 case List(Some("test")) => true
 case _ => false
 }

Even though completely correct this construct is syntactically inefficient because the main
information, the pattern to test against, is buried in a lot of syntactic overhead.

We think that the relative commonness of such a “match/doesn’t match” check (e.g. as a filter
predicate) warrants a small syntax extension offering an alternative for expressing the above in
a more succinct way.

Proposed syntax

Allow

x match pattern [if guard]

as a short form for

x match {
 case pattern [if guard] => true
 case _ => false
}

One especially beneficial effect of this extension would be that it allowed one to define a​
`T => Boolean` (predicate) function literal via a `_ match pattern` expression, which is similarly
efficient on the syntax level as "Pattern Matching Anonymous Functions" (SLS 8.5).
Creating even shorter forms of anonymous “match/doesn’t match” function literals may be
difficult to achieve because of the similarity between expressions and patterns and the resulting
possible ambiguity in the parser, which is currently solved by allowing patterns only after certain
keywords in certain positions.

Specification changes
The section about pattern matching expression syntax (8.4) needs to be amended and the
proposed transformation be explained.

Add the new rule for the boolean pattern match:

Expr ::= PostfixExpr ‘match’ ‘{’ CaseClauses ‘}’ | PostfixExpr ‘match’ Pattern [Guard]

Add explanation:

A pattern matching expression of the second form

PostfixExpr ‘match’ Pattern [Guard]

is transformed to a pattern matching expression of the first form by creating two regular case
clauses. The first case clause matches the given pattern and has the constant value `true`; the
second case clause is a wildcard pattern matching everything else and has the constant value
`false`.

Implementation
A regular pattern matching expression is introduced by the keyword `match` followed by several
case clauses embraced in curly brackets. A boolean pattern matching expression is introduced
by `match` followed by the single pattern directly. The parser can transform a boolean pattern
matching expression directly into the regular form so that no new syntax trees are necessary to
represent the new form.

See the implementation proposal for a concrete implementation.

Interactions with other language features
●​ Infix expressions: A boolean pattern matching expression must be enclosed in

parentheses to be used in infix expressions.

Possible disadvantages
●​ People might start using if/else chains with boolean matches instead of using regular

pattern matching with several case clauses

Alternatives
●​ Long form as given in the introduction
●​ Library functions

You can cut down a bit of the noise today with `PartialFunction.cond`:

scala> if (PartialFunction.cond(1) { case 2 => true }) {}

or with a new method `PartialFunction.matches`:

class Matches[T](x: T) {
 def matches(pf: PartialFunction[T, Any]) = pf isDefinedAt x
}

implicit def anyToMatches[T](x: T) = new Matches[T](x)

scala> val x: List[Option[String]] = List(None)

scala> x matches { case List(Some("Test")) => }
res0: Boolean = false

scala> x matches { case List(None) => }
res1: Boolean = true

https://github.com/jrudolph/scala/commit/b56717f18b494d983c74e52f9224b61f0b596069

Examples

val x: List[Option[String]] = //...
x match List(Some("Test"))

or

x.count(_ match Some("Test"))

or even

x.count(_ match Some("Test" | "test2"))

Boolean pattern matching expressions would also enable match-based assertions, as discussed
on the mailing list.

References
Mailing list discussion: https://groups.google.com/d/topic/scala-debate/JdJx03POwyg/discussion
Stackoverflow discussion:
http://stackoverflow.com/questions/4437061/scala-short-form-of-pattern-matching-that-returns-b
oolean
Implementation proposal:
Branch: https://github.com/jrudolph/scala/tree/boolean-match
Commit:
https://github.com/jrudolph/scala/commit/b56717f18b494d983c74e52f9224b61f0b596069

http://stackoverflow.com/questions/4437061/scala-short-form-of-pattern-matching-that-returns-boolean
http://stackoverflow.com/questions/4437061/scala-short-form-of-pattern-matching-that-returns-boolean
https://github.com/jrudolph/scala/tree/boolean-match
https://github.com/jrudolph/scala/commit/b56717f18b494d983c74e52f9224b61f0b596069

	Boolean pattern matching expressions
	Introduction
	
	
	Proposed syntax
	Specification changes
	
	Implementation
	Interactions with other language features
	Possible disadvantages
	Alternatives
	Examples
	References

