Assignment 4

PM1/04 (Group B)

(Symbols have their usual meanings)

- 1. (a) What do you mean by an orientable surface?
 - (b) Show that Mobius band is not orientable.
 - (c) Find the equation of the tangent plane to the surface patch given by $\sigma(u,v)=(u,v,u^2-v^2)$ at the point (1,1,0).

 $S = \left\{ (x,y,z) \in \mathbf{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}$, where a,b,c are non-zero constant is a smooth surface.

3. Define first fundamental form of a surface S at any point p in R³. Find out the first fundamental form of the following:

- a) Generalized cylinder $\sigma(u,v)=\gamma(u)+va$, a is a point in R^3
- b) Unit sphere S²
- c) $\sigma(u,v)=(f(u)\cos v, f(u)\sin v, g(u))$ (surface of revolution)
- d) $\sigma(u, v) = (\sinh u \sinh v, \sinh u \cosh v, \sinh u)$.

4. When two surfaces S_1 and S_2 are locally isometry? Prove that a smooth map $f: S_1 \rightarrow S_2$ is local isometry if and only if the symmetric bilinear form <, $>_p$ and f*<, $>_p$ on T_pS_1 are equal for all p in S_1 .

5. Prove that a local diffeomorphism $f:S_1 \rightarrow S_2$ is a local isometry if and only if for any surface patch σ_1 of S_1 , the patches σ_1 and f_0 σ_1 of S_1 and S_2 respectively have the same fundamental form.

6. Define second fundamental form. Find out the second fundamental form of the following:

- a) Generalized cylinder $\sigma(u,v)=\gamma(u)+va$, a is a point in R^3
- b) Unit sphere S²
- c) $\sigma(u,v)=(f(u)cosv, f(u) sinv, g(u))$ (surface of revolution)
- d) the elliptic paraboloid $\sigma(u, v)=(u, v, u^2 + v^2)$.

7. If the second fundamental form of a surface patch σ is zero everywhere, prove that σ is planar.

8. Establish
$$\kappa^2 = \kappa_n^2 + \kappa_g^2$$

9. Consider the surface of revolution (f(u)cosv, f(u) sinv, g(u)), where $u \ (f(u), 0, g(u))$ is a unit speed curve in R³. Compute the Gaussian and mean curvatures of surface of revolution.

- 10. Find the normal curvature of any curve on the sphere of radius r.
- 11. Let K_1 and K_2 be the principal curvatures at a point p of a regular surface patch σ . Show that K_1 , K_2 are real numbers.
- 12. Show that the Gaussian and mean curvatures of the surface z=f(x,y), where f is a smooth function are given by

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2}, H = \frac{(1 + f_y^2)f_{xx} - 2f_xf_yf_{xy} + (1 + f_x^2)f_{yy}}{2(1 + f_x^2 + f_y^2)^{3/2}}$$

- 13. Find the unit surface normal vector ξ for a surface given by r=(u cosv, u sinv, cv), c being constant.
- 14. Define Gaussian curvature on a surface. Find a relation between the Gaussian curvature and scalar curvature of a surface.
- 15. Define normal curvature. Show that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$
- 16. Show that the Gaussian curvature and mean curvature of a regular surface S are smooth function of S.
- 17. Let $S\subseteq R^3$ be a regular surface. Let (U,F,V) be a local parametrization of S. Let $W\subseteq R^2$ be a open set, $\varphi:W\to R^3$ a map with $\varphi(W)\subset S\cap V$. Then prove that φ considered as a map from W to R³ is smooth if and only if $F^{-1}\boxtimes \varphi:W\to U\subseteq R^2$ is smooth.
- 18. Show that every isometry is a conformal map. Give an example of conformal map which is not an isometry.