*Jump to Kirchoff's Laws

Heating in Circuits

- As the electric field moves charges in a conductor, the charges collide with the atoms of the material
 - Atoms of the conductor vibrate the collisions (KE) → heat/thermal energy.
 - Drift speed decreases (↓) as conductor heats up (↑) as # of collisions increases
 (↑)

Resistance (Ohms, Ω)

- Resistance determines how much electricity will flow
 - o property of the conductor
- Conducting wires typically have very low resistance
 - o often ignored/negligible resistance
- Resistor a conductor with *non-negligible* resistance

Ohm's Law and Resistivity

- When temperature of *most* metallic conductors is constant, I ∝ V
- R = Resistance (Ohms / Ω or JsC⁻²)
- V = Voltage (Volts / V or JC⁻¹)
- I = Current (Amperes / A or Cs⁻¹)

$$R = \frac{V}{I}$$
 or $V = IR$

Resistivity (ρ) - a property of a material at a *fixed* temperature that combines the factors of resistance, area, and length:

ρ, R

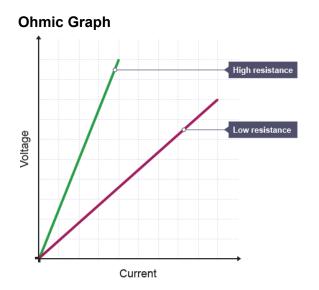
A = cross-sectional area

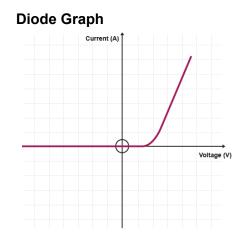
L = length

$$\rho = \frac{RA}{L}$$


"The **resistance** of an object (i.e., a resistor) depends on its shape and the material of which it is composed. **Resistivity** ρ is an intrinsic property of a material and directly proportional to the total **resistance** R, an extrinsic quantity that depends on the length and cross-sectional area of a resistor."

• Think of resistivity as similar to atomic mass or density.


Thermistors and Diodes

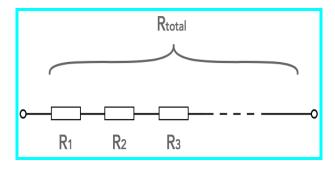

- Both are non-Ohmic
 - Sometimes don't follow Ohm's law
- Thermistors (portmanteau of thermal resistor)
 - resistors that significantly change resistance with temperature
- Diodes

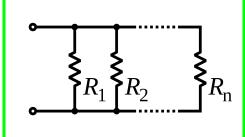
 very low resistance when current flows one direction, and very high resistance the other direction

Thermistor Graphs

Electric Power and EMF

Power is the rate at which work is done moving charges from point to point.


$$P = IV = I^2 R = \frac{V^2}{R}$$


• Electromotive Force, measured in volts, defined as the work done per unit of charge when moving charges across a battery terminal

$$\varepsilon = \frac{W}{q} = \frac{P}{I}$$

Series vs Parallel Connections

- Series (left) components are connected one after the other
- Parallel (right) components are connected so they all have common ends

Resistors in Series

- Current is the same across each resistor
- Potential differences must add up to the total value
- Add resistors to get a total resistance.

$$R_{total} = R_1 + R_2 + \dots$$

Resistors in Parallel

- Potential difference is the same across each resistor
- Currents must add up to the total value
- Add the inverses of the resistors to find total resistance

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Ammeters and Voltmeters

- Ammeters measure current, and are connected in series. They have sufficiently small resistance so as not to add extra resistance to the circuit.
- Voltmeters measure potential difference, and are connected in parallel. In theory they
 have infinite resistance so that they draw no current from the circuit.

Kirchoff's Current/First Law

• States that for a junction in a parallel circuit, whatever amount of current entering the junction must equal the sum of the currents leaving the junction

$$\Sigma I_{in} = \Sigma I_{out}$$
 and $\Sigma I = 0$ (junction)

Multiloop Circuits

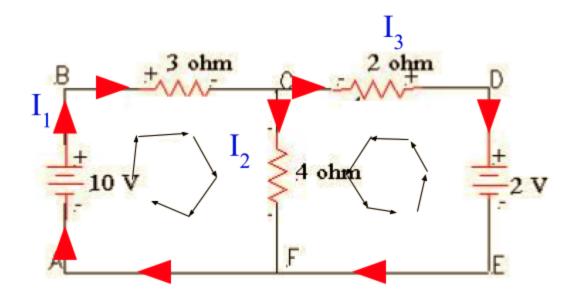
- Uses Kirchoff's Loop (Second) Law, which states that the sum of the potential differences in a loop must equal zero.
- Can be used to find current

$$\Sigma V = 0 (loop)$$

Rules for Multi-loop Circuits

Positive (+)	Negative (-)
Loop goes from - to + across a battery (V)	Loop goes from $+ \rightarrow$ - across a battery (V)
Loop goes against the current in a resistor (Ω)	Loop goes with the current in a resistor (Ω)

General Guidelines


- Look for the I that shows up twice
- Solve each equation for the other I's
- Substitute both of those expressions into

$$I_1 = I_2 + I_3$$

- Solve for the I that showed up twice
- Substitute that value into your other expressions to solve for the remaining I's
- If a current comes out negative it just means you picked the wrong direction. Just make it positive.

IB Physics SL 5.2 — Circuits & Kirchoffs Laws

Practice Problem

- 1. We start with 2 batteries (10 V & 2 V) and 3 resistors (3 ohm, 4 ohm, & 2 ohm).
- 2. Choose a direction and a battery and start drawing arrows to mark the flow of the current.
- 3. Because the loop goes from negative $(-) \rightarrow$ positive (+) for both batteries, V is positive.
- 4. Look at the direction of the current vs the direction of the loop to find the sign for each current.

5. Left loop

a.
$$\Sigma V = 0$$
 (loop)

b.
$$V_1 - R_1 I_1 - R_2 I_2 = 0$$

i. The loop goes with both I_1 and I_2 , thus both are negative.

c.
$$10 - 3I_1 - 4I_2 = 0$$

d. Solve for I_1 in the left loop equation

6. Right loop

a.
$$\Sigma V = 0$$
 (loop)

b.
$$V_2 + R_3 I_3 - R_2 I_2 = 0$$

- i. The loop goes against I_3 , thus it's positive.
- ii. The loop goes with I_2 , thus it's negative.

c.
$$2 + 2I_3 - 4I_2 = 0$$

- d. Solve for I_3 in the right loop equation
- 7. Substitute I_1 from the left loop equation and I_3 from the right loop equation into the equation $I_1 = I_2 + I_3$

8. The answers should be $I_1 = 2$, $I_2 = 1$, and $I_3 = 1$