Software Carpentry: Bash, Git and Python
(8/11-8/12/22, Virginia Tech)

Table of Contents

Software Carpentry: Bash, Git and Python (8/11-8/12/22. Virginia Tech
Table of Contents
ign in 8/11/22 (Name, Email tional Pronoun
Before we start:
Workshop Overview

Automating Tasks with the Unix Shell (8/11 Morning)

Key Links
Notes

Morning 1 fi k fore | ing off for lunch
Plotting and Programming in Python (Part 1- Thursday afternoon

Sign in 8/11/22 (Name, Email, Optional Pronouns)

Nathaniel Porter, ndporter@vt.edu (helper) (he/him/his)

Matthew Brown, brownm12@vt.edu (instructor) (he/him/his)

Ashit Harode , ashitO2@vt.edu (student) (he/him/his)
Ernesto Urbaez, uernesto@vt.edu (Graduate Student) (he/him/his)
Sabrina Amorim, asabrina@vt.edu (Graduate Student) (she/her/hers)
Brandy Ayesu-Danso, brandyad@vt.edu (Graduate student) (she/her/hers)
Scott Lucero, dslucero@vt.edu, (Research Faculty) (he/him/his)
Akhileswar Yanamala, akhileswar@vt.edu (Graduate Student) (he/him/his)
Festus Animah, aafestus@vt.edu (Graduate student) (he/him/his)
Benedict Isaac, benedictisaac@vt.edu (Student) (he/him/his)
Cesar Cardenas, cesarac1975@vt.edu (Graduate student) (he/him/his)
Aditya Raj, araj@vt.edu (Grad student) (he/him/his)
Mahyar Arani, mahyar@vt.edu (Graduate student) (he/him/his)
Pavan Reddy, pavanreddy@vt.edu (Grad student) (He/Him)
Tosin Ogunmayowa olutosin@vt.edu (Grad Student) (He/Him/His)
Priyanka Bose, privanka18@vt.edu (Grad Student) (she/her/hers)

mailto:ashit02@vt.edu
mailto:ndporter@vt.edu
mailto:brownm12@vt.edu
mailto:ashit02@vt.edu
mailto:uernesto@vt.edu
mailto:asabrina@vt.edu
mailto:brandyad@vt.edu
mailto:dslucero@vt.edu
mailto:akhileswar@vt.edu
mailto:aafestus@vt.edu
mailto:cesarac1975@vt.edu
mailto:araj@vt.edu
mailto:mahyar@vt.edu
mailto:pavanreddy@vt.edu
mailto:olutosin@vt.edu
mailto:priyanka18@vt.edu

Before we start:

e Follow setup instructions on workshop webpage
e Complete pre-workshop survey

e Signin

Workshop Overview

Workshop webpage:_https://ndporter.github.io/2022-08-11-vt-swe-python-online/
Code of Conduct

o

o

Live Coding
Instructors and Helpers
No one left behind!

Ask questions in chat or verbally
Errors are a chance to learn

Automating Tasks with the Unix Shell (8/11 Morning)

Key Links

Setup (data and software)

Notes

e Introducing the Shell

O

o

o O O O

O

Make sure you have the shell and have data downloaded from the setup link
Most computing interactions today use graphical interfaces (GUIs) with menus
and clicking

Some tasks require repeating similar processes over and over (sometimes
thousands of time)

Shell programming helps to simplify repetitive tasks and automation

Shells use only text to interact

BASH is the most widely used shell

Nelle’s Pipeline - we will be working with data where she needs to automate
processing lots of data on a short timeline

Is : lists files and directories in the current directory

e Navigating Files and Directories

o

O

o

pwd: print’s location (path) of current working directory
m Each OS has different directory structures but this is like a filing system
for where each file is located
Is -F: the -F is an option, which in this case provides additional output to
distinguish directories from files (with the / at the end)
clear: clear output from screen

https://ndporter.github.io/2022-08-11-vt-swc-python-online/
https://carpentries.typeform.com/to/wi32rS?slug=2022-08-11-vt-swc-python-online
https://ndporter.github.io/2022-08-11-vt-swc-python-online/
https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
http://swcarpentry.github.io/shell-novice
https://swcarpentry.github.io/shell-novice/setup.html
https://swcarpentry.github.io/shell-novice/01-intro/index.html
https://swcarpentry.github.io/shell-novice/02-filedir/index.html

o Getting help
m Windows: [command] —help (ex: Is —help)
m Mac: man [command] (ex: man Is)
e Type ‘q’ to exit manual
o Modifying how commands work
m Options (e.g.Is -F -lh etc) change what the command does or outputs
e Options start with a -
e Multiple options can be combined with a single dash (like -lh)
e Order doesn’t matter
m Arguments (Is Desktop) provide additional information to a command -
like a directory other than the current directory to list the contents of
e Arguments are specified after the command and any options
(COMMAND -OPTIONS ARGUMENT)
o cd : change directory
m .. and. are special directories - . is the current directory while .. is up one
level
m You can change one level at a time, use multiple separated by a slash, or
use the full absolute path (from /users/ or /c/ etc)
m ‘cd - allows you to move to the immediate previous directory (and toggle
back and forth between two)
m ‘cd’ with nothing else or ‘cd ~’ will automatically return you to your home
directory
o Directories and files that begin with a *.” are hidden by default
m To show in Is, use the -a option
o Tab-completion allows you to type part of a file or directory name and press tab
and it will auto-complete
Working with Files and Directories
o mkdir : make one or more new (empty) directories
m Specify names as arguments (at least one)
m -p option allows making nested directories together
o Names
m Avoid spaces when possible
m Don’t begin with *~’
m Use only letters/numbers/./-/_ to avoid issues

m Nano is a simple text editor that is typically available for basic text and
keyboard only editing
m Use CTRL-O to save and follow prompts
m CTRL-X exits (and prompts to save any unsaved changes)
m Call with "nano FILENAME®
o Moving files and directories
m mv:“move” can be used to change names or directories of a file
m mv current_file_path/current_file_name new_file_path/new_file_name

https://swcarpentry.github.io/shell-novice/03-create/index.html

m Move multiple files at once with "'mv current_1 current_2 ...
new_file path/
e Notice no file names on the last one because each file will be
moved (and keep its name)
o Copy:
m For afile: cp current_path_and_file new_path_and_file
m For adirectory: cp -r current_path new_path
e -r option required for directories
e Can create a new directory (but copying individual files will not)
o Remove
m rm current_path_and_file
m Deleting is forever - there’s no recycle bin to recover things you
delete
m Remove a directory with: 'rm -r current_path’
e Be extra careful here - this will permanently delete everything in
the directory, even if it's your home directory
m rm -i (interactive) requires you to confirm each file to be deleted
o Wildcards (pattern matching)
m Can be used in multiple commands (such as Is)
m *replaces any one or more character
m 7 replaces exactly one character
e Other sections (not covered today but in curriculum)
o Pipes and Filters
m Pipes send the output of one command as input to another
m Filters help sort or select subsets of data
m Redirects can send output to a new file or append to the end of an

existing file
o Loops
m Allow repeating a set of operations on multiple inputs
o Scripts

m Allows saving sequence of commands to run repeatedly
m Can also take inputs that allow you to change options etc
o Finding things
m There are multiple ways to search files automatically (filenames or file
contents) including special expressions that allow custom strings

NEXT BREAK: 12:30-1:30 (lunch)

Morning 1 feedback (before logging off for lunch)

e What was helpful or went well?
o Following along with the instructor on my own system really helped me see the

result of discussion.

o Well explained

o Clear explanation with useful information

o Matt's pace and speed is really useful!

e What could have been better or was difficult/confusing?

o More time for scripts and loops would be useful. | think that these are very
powerful tools.

o More time on scripting and looping through file similar to the case study
discussed in the beginning of the course would have been great

Plotting and Programming in Python (Part 1- Thursday afternoon)

https://swcarpentry.qithub.io/python-novice-gapminder/

Python Documentation

e Running and Quittin
o In Anaconda, access JupyterLab through the Anaconda Navigator
o JupyterLab runs in your browser and basically keeps a Python session (kernel)
open in the background
o Command mode: Esc (gray)
m m: Markdown mode (write text)
y: Code mode
b: Make a new cell below current cell
a: Make a new cell above current cell
x: Delete the current cell
z: Undo
o Edit mode: Return (blue outline)
m Write code or text
m Shift + Return executes contents of the cell
m Create comment in code: #
o Closing Jupyter Lab Notebook
m File -> Shut Down
m Or From Terminal: Control + ¢
e Variables and Assignment
o Use variables to store values
m age =42
m first_ name = “Sarah”
m Use print() to display values
e When you assign a value to a variable, nothing will print out to the
console.
e |f you want to know what that value is, use print: print(first_name)
o Use an index to get a single character from a string
= 'helium'[0]

https://swcarpentry.github.io/python-novice-gapminder/
https://docs.python.org/3/
https://swcarpentry.github.io/python-novice-gapminder/01-run-quit/index.html
http://swcarpentry.github.io/python-novice-gapminder/02-variables/index.html

m Index begins as 0
o Slice to get a substring
m string[start:stop]
m 'sodium'[0:3]
m Begins at start and goes up to but not including the stop index.
o Find length of strings
m len()
Data Types and Type Conversion
o Every value has a type
m Types control what operations (or methods) can be performed on a given
value.
m type(): Find the type of an object.
Type dictates what you can do with different objects
Compare
e print(5-3)
e print(‘hello’ - 'h')
o Can use + and * to operate on strings
m full_name =“Sara” + “ “ + “Over”
m =*10
o Convert between numbers and strings
m str() to create string
e print(str(1) +'2)
m int() to create integer
e print(1 +int('2"))
o Can mix integers and floats freely in operations
m print(halfis', 1/2.0)
m print('three squared is', 3.0 ** 2)
o Division in Python
m Integer division: 5// 3
m Floating point division: 5/ 3
m Remainder division: 5 % 3
Built-in Functions and Help
o A function may take zero or more arguments
o Every function returns something
m If the function doesn’t have a useful result to return, it usually returns the
special value "None".
o max, min, and round functions
m max and min both work on strings and numbers
m But they must be given things that can be meaningfully compared. Cannot
combine strings and numbers in same call.
m round() can take two arguments: value and decimal places if desired
e round(3.712)
e round(3.712, 1)
o Method vs function

http://swcarpentry.github.io/python-novice-gapminder/03-types-conversion/index.html
http://swcarpentry.github.io/python-novice-gapminder/04-built-in/index.html

o

o

m Function: round(3.712)

m Method: my_string.swapcase()
Getting help

m help(function-name)

m In Jupyter Notebook place the cursor near where the function is invoked

in a cell and hold down Shift + Tab

m function-name?

m Also consult the Python Documentation
Python errors

m Syntax error

e Watch for missing parentheses
m Runtime error

e Libraries

o

O

o

Must import a library module before using it
m import: Use import to load a library module
e import math
m Refer to things from the module as module _name.thing_name
e math.pi
e math.cos()
m Use help to learn about the contents of a library module
e help(math)
e A module must be imported/loaded to use help.
Import specific items from a library module
m from math import cos, pi
m Now we can use pi and cos() without math. notation
m cos(pi)
Create an alias for a library module
m import mathas m
m m.cos(m.pi)
m This is commonly used for libraries that are frequently used or have long
names.
e An example is import pandas as pd

e Reading Tabular Data into DataFrames

o

o

Use the Pandas library to do statistics on tabular data
import pandas module
m import pandas as pd
m pdis common alias for pandas
Read a csv data file with pd.read_csv()
m data = pd.read_csv('data/gapminder_gdp_oceania.csVv')
Use index_col to specify that a column’s values should be used as row headings
m data = pd.read_csv('data/gapminder_gdp_oceania.csv',
index_col="country')
Investigate the aspects of the DataFrame
m data.info()

https://docs.python.org/3/
http://swcarpentry.github.io/python-novice-gapminder/06-libraries/index.html
http://swcarpentry.github.io/python-novice-gapminder/07-reading-tabular/index.html

o See the columns of the DataFrame
m data.columns
m Note that this is data, not a method. (It doesn’t have parentheses.)
o Transpose a DataFrame
m Columns become rows and rows become columns
m DataFrame. T
o Get summary statistics about the data
m data.describe()
o Inspecting the data
m Read in longer set of data
e americas = pd.read_csv('data/gapminder_gdp_americas.csV',
index_col="country")
m Look at the start of the data: americas.head()
e Only the first three lines: americas.head(n = 3)
m Look at the end of the data: americas.tail()
e Only the last three lines: americas.tail(n = 3)
o Put it all together
m americas.T.tail(n=3).T
m Transpose, get tail, and then transpose again
m Get last three columns
Pandas DataFrames
o Subsetting DataFrames
m By position: DataFrame.iloc|..., ...]
e First column and first row: data.iloc[0, 0]
m By label: DataFrame.loc|..., ...]
e data.loc["Albania", "gdpPercap_1952"]
m Use : onits own to mean all columns or all rows
e All columns of a row: data.loc["Albania", :]
e All rows of a column: data.loc[:, "gdpPercap_1952"]
m Slices of DataFrames

e data.loc['ltaly":'Poland', 'gdpPercap_1962":'gdpPercap_1972']

e With slicing, loc is inclusive at both ends, while iloc is inclusive at
the beginning and exclusive (does not include) the end point.

o Use comparisons to select data based on value
m Which values were greater than 10,0007
e data > 10000
m Boolean mask: Turn False into NaN (Not a Number)

e Defining a boolean mask: Anytime you apply a True/False
question to more than one piece of data (vector, dataframe, array),
it returns a boolean array of the same size as the data. So when
you use the mask, you're just saying keep only the data where the
condition is true.

e mask = data > 10000

e data[mask]

http://swcarpentry.github.io/python-novice-gapminder/08-data-frames/index.html

e This is useful because NaNs are ignored by operations like max,
min, average, etc.
e data[mask].describe()
o Group By: split-apply-combine
m Example of splitting countries in Europe by how often the GDP is above
or below the mean GDP.
m Create a boolean mask
e mask_higher = data > data.mean()
m Create a wealth score: How often was each country above or below the
mean
e wealth_score = mask_higher.aggregate('sum’, axis=1) /
len(data.columns)
e Plotting
o matplotlib
m matplotlib tutorial
m matplotlib is the most widely used scientific plotting library in Python
m import matplotlib.pyplot as plt
Making our first plot
m xandy values
e time=[0,1,2, 3]
e position = [0, 100, 200, 300]
m Make the plot and add axis labels
e plt.plot(time, position)
e plt.xlabel("Time (hr)')
e plt.ylabel('Position (km)")
Making a plot with Pandas data
m data = pd.read_csv('data/gapminder_gdp_oceania.csv',
index_col="country")
m Prepare the data for plotting
e Need to turn column names into integers
e Getthe years
o years = data.columns.str.strip(‘gdpPercap_')
e Rename the columns
o data.columns = years.astype(int)
m Make the plot
e data.loc['Australia'l.plot()
Select and transform data, then plot it
m data.T.plot()
m plt.ylabel('GDP per capita')
Can change the style of plots
m plt.style.use('ggplot’)
m data.T.plot(kind="bar")
m plt.ylabel('GDP per capita')
Saving plots

O

o

o

o

o

http://swcarpentry.github.io/python-novice-gapminder/09-plotting/index.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

m When run in the same code chunk
e plt.savefig('my_figure.png')
m Alternative to save file as variable and then save
e Create plot
e Save last figure: fig = plt.gcf()
o Short for get current figure
e fig.savefig('my_figure.png')

Afternoon 1 feedback (before logging off for the day)

e What was helpful or went well?
e What could have been better or was difficult/confusing?

Sign in 8/12/22 (Name, Email, Optional Pronouns)

Jesse Sadler, jrsadler@vt.edu (instructor) (he/him/his)

Ellie Kohler, elliek@vt.edu (helper) (she/her/hers)

Ernesto Urbaez, uernesto@yvt.edu (Graduate Student) (he/him/his)
Brandy Ayesu-Danso, brandyad@yvt.edu (Graduate Student)(she/her/hers)
Aditya Raj, araj@vt.edu (Grad student) (he/him/his)

Benedict Isaac, benedictisaac@vt.edu (Graduate Student)

Priyanka Bose, privanka18@vt.edu (Grad Student) (she/her/hers)

Cesar Cardenas, cesarac1975@vt.edu (Graduate student) (he/him/his)
Ashit harode, ashit02@vt.edu (he/him)

Plotting and Programming in Python (Part 2 - Friday morning)

https://swcarpentry.qithub.io/python-novice-gapminder/

Python Documentation

e Questions:
o When the notebook opened this morning there was unexpectedness.- This is a
function of the Jupyter Notebook, as you can edit out of order

e Running and Quitting
o Command mode: Esc (gray)
m m: Markdown mode (write text)

mailto:elliek@vt.edu
mailto:uernesto@vt.edu
mailto:brandyad@vt.edu
mailto:araj@vt.edu
mailto:benedictisaac@vt.edu
mailto:priyanka18@vt.edu
mailto:cesarac1975@vt.edu
mailto:ashit02@vt.edu
https://swcarpentry.github.io/python-novice-gapminder/
https://docs.python.org/3/
https://swcarpentry.github.io/python-novice-gapminder/01-run-quit/index.html

y: Code mode
b: Make a new cell below current cell
a: Make a new cell above current cell
x: Delete the current cell
z: Undo
Edit mode: Return (blue outline)
m Write code or text
m Shift + Return executes contents of the cell
m Create comment in code: #
Closing Jupyter Lab Notebook
m File -> Shut Down
m Or From Terminal: Control + ¢

Lists
o Create alist
m A list stores many values in a single structure
m Created with square brackets [],
m items within are separated by commas
e len(list_name) #how many items/values are in a list
o Manipulating lists
m Lists can be sliced and indexed like strings
m Replacing and appending values with functions
e list name.append() #appending items to the list to make it longer
e list name.extend() #adding a list ot a list
e del list_ name[index] #remove items from a list
m Empty lists contains no values []
o Characters vs lists
m Character strings are immutable- cannot replace individual characters
within a string.
m Lists and characters can both be indexed
For Loops
o For loop tutorial and syntax
for _in ___ :
command

O

m The loop executes commands once for each value in a collection
m A for loop is made of collection, loop variable, body
m Formatting-

e must end with a colon

e body must be indented

o Body can contain many statements.
e Loop variable names can be anything
Range- iterate over a sequence of numbers
for___inrange (,):
command

m arange is not a list, and does not act the same way

http://swcarpentry.github.io/python-novice-gapminder/11-lists/index.html
http://swcarpentry.github.io/python-novice-gapminder/12-for-loops/index.html

o Accumulator- turn many values into one
m Initialize by creating a variable that equals 0, an empty string, or an empty
list.
Conditionals
o if statements -
m Controls whether a block of code is executed

o |f
o ifitis true, execute command
goes in the beginning
e else
follows if.
If a condition is not true, execute command
o elif

o

short for else if,
use when you want to provide several alternative choices
goes in between if and else
can have as many elifs as you want
m Often used inside loops
m Ordering matters- the branches of a conditional are tested in order of the
written command.
e Conditions are tested once (until it's true) and in order
e \Variables can evolve within a loop
o Compound relations
m and
e |f a statement hits every condition
m or
e If a statement has one of the conditions true

O

o

Looping Over Data Sets
o For loops can read in several files of data

m Can call files individually
o Glob tutorial
m Glob means matching a set of files with a pattern
e *match zero or more characters
e ? match exactly 1 character
import glob
Glob.glob(“*.txt”) #matches all files in the directory that has a
name ending in .txt
m Use glob and for to process batches of files
for filename in glob.glob (‘folder/*.csv):
data = pd.read_csv(filename)
Writing Functions
o Reuse code- if you write the same code more than twice, you may want to think
about writing a function. lterative process

http://swcarpentry.github.io/python-novice-gapminder/13-conditionals/index.html
http://swcarpentry.github.io/python-novice-gapminder/14-looping-data-sets/index.html
http://swcarpentry.github.io/python-novice-gapminder/16-writing-functions/index.html

o Define a function
m def function_name(parameters):
command / block of code

m Defining a function does not run it
o Arguments
m Matched to parameters in definition
m Functions are most useful when they can operate on different data.
m Specify parameters when defining a function.

e These become variables when the function is executed.

e Are assigned the arguments in the call (i.e., the values passed to the
function).

e [f you don’t name the arguments when using them in the call, the
arguments will be matched to parameters in the order the
parameters are defined in the function.

o Return command
m return()
m Give the value back to the caller in a function.
m Saves to an object/ variable

Afternoon 2 feedback (before logging off for lunch)

e What was helpful or went well?
e What could have been better or was difficult/confusing?

Version Control with Git (Friday afternoon)
https://swcarpentry.qgithub.io/git-novice/index.html

e Automated Version Control
o Why you should use version control.
o Version control systems start with a base version of the document and then
record changes you make each step of the way.
m Power of separating changes from the document itself.

m Opens ability for multiple people to make changes at the same time.
o Version control provides

m Record of changes, of commits
m Complete history of commits of a project and their metadata make up a
repository.
e Setting up Git
o Info needed to set up Git

https://swcarpentry.github.io/git-novice/index.html
https://swcarpentry.github.io/git-novice/01-basics/index.html
https://swcarpentry.github.io/git-novice/02-setup/index.html

m our name and email address
e ‘git config --global user.name "Vlad Dracula™
e git config --global user.email "vlad@tran.sylvan.ia™
m preferred text editor
e ‘qit config --global core.editor "nano -w"
m and that we want to use these settings globally (i.e. for every project).
m Default branch name
e ‘qit config --global init.defaultBranch main®
o Check your settings
m git config --list’
o Get help on configuration commands
m git config -h" or "git config --help’
Creating a Repository
o Create a repository
m ‘cd ~/Desktop’
m "mkdir planets’
o Initiate git repository
m gitinit’
m git file
o Make sure you are on branch main
m Check branch name: "git branch --show-current’
m Create and move to main branch: “git checkout -b main®
o Check everything
m git status’
Tracking Changes
o Create mars.txt
‘git add’
“git commit -m
m Writing good commit messages.
o ‘gitlog
o Make another change
O
O

o

e

O

“git diff’
Go over two-step process of committing
m Staging area with "git add’
m Actual commit with "git commit’
m Advice not to use "git commit -a’ but to commit files manually.
o Make another change
m Stage changed file
m git diff --staged’
o ‘gitlog
m Limit size of log: "git log -1°
m gitlog --oneline’
m gitlog --oneline --graph’
o git and directories

mailto:vlad@tran.sylvan.ia
https://swcarpentry.github.io/git-novice/03-create/index.html
https://swcarpentry.github.io/git-novice/04-changes/index.html

o

m Git does not track directories on their own, only files within them.
e Create a directory and run “git status’
m Add files in a directory with "git add directory-name’
Committing multiple files
m Make change to mars.txt
m Create venus.txt:
e ‘echo "Venus is a nice planet and | definitely should consider it as
a base." > venus.txt’
m git add mars.txt venus.txt’
m git commit’

Exploring History

©)
O

o

"HEAD'
Exploring history
m git diff HEAD mars.txt” makes explicit "git diff because you are doing
"diff based on the "HEAD".

m dff with previous commits
e ‘git diff HEAD~1 mars.txt’
m git show’

e Shows the changes made at an older commit as well as the
commit message.
m Use of commit ID
e ‘git diff 8cc62aa84be902807ee058493e689fda64843829 mars.ixt’
e \Way too long
Use of SHA (first 7 characters of ID)
e ‘qit diff 8cc62aa mars.ixt’
Restoring history
m Restore modified document to "HEAD'
e git checkout HEAD mars.txt’
e Also works if changes are staged.
m Restore document to previous commit
e git checkout c0881d2 mars.txt’
e This places changes in the staging area.
e Check with “git status’
m Go back to 'HEAD®
e ‘git checkout HEAD mars.txt’
Detached "HEAD®
It is important to remember that we must use the commit number that identifies
the state of the repository before the change we’re trying to undo.
Explore history of one document
m gitlog mars.txt’
m git log --patch mars.txt’: See both commit messages and differences.

lgnoring Things

o

‘nano .gitignore’
m Create and add to ".gitignore’

https://swcarpentry.github.io/git-novice/05-history/index.html
https://swcarpentry.github.io/git-novice/06-ignore/index.html

m Add and commit ".gitignore™ so that others can have the same file.
o Using ".gitignore™ helps us avoid accidentally adding files to the repository that
we don’t want to track.
m Force adding ignored files: "git add -f a.dat’
m Show ignored files: "git status --ignored’
o Including specific files
m [final.dat’
e Remotes in GitHub
o 1. Create a remote repository
m Login to GitHub
m Create a new repository with the same name as your git repository
m Do not add README, .gitignore, or license.
m This essentially creates a git repository on GitHub's servers.
o 2. Connect local to remote repository
m git remote add origin git@gqithub.com:vlad/planets.git’
m Check with "git remote -v’
o 3. Create an SSH key pair
m Check if key pairs already exist on computer
e Is-al ~/.ssh’
m Create the keys
e 'ssh-keygen -t ed25519 -C "vlad@tran.sylvan.ia™
o '-t': specifies which algorithm to use
o '-C': attaches a comment
e Hit <J to use default file.
e Enter passphrase
m Check that key pairs were created
e ’Is-al ~/.ssh’
m Copy the public key to GitHub
e Get public key
o ‘cat ~/.ssh/id_ed25519.pub’
e Go to GitHub
o Settings -> SSH and GPG Keys -> New SSH key
o Add name and copy public key
e Connect
o ‘ssh -T git@github.com’
o 4. Push local changes to a remote
m git push origin main’
m Alternative to use "-u’ to set origin as upstream (same as
‘--set-upstream-to’)
e git push -u origin main’
o 5. Pull changes
m git pull origin main
e Collaborating
e Conflicts

https://swcarpentry.github.io/git-novice/07-github/index.html
mailto:git@github.com
mailto:vlad@tran.sylvan.ia
https://swcarpentry.github.io/git-novice/08-collab/index.html
https://swcarpentry.github.io/git-novice/09-conflict/index.html

	Software Carpentry: Bash, Git and Python (8/11-8/12/22, Virginia Tech)
	Table of Contents
	Sign in 8/11/22 (Name, Email, Optional Pronouns)
	Before we start:
	Workshop Overview
	Automating Tasks with the Unix Shell (8/11 Morning)
	Key Links
	Notes

	Morning 1 feedback (before logging off for lunch)
	Plotting and Programming in Python (Part 1- Thursday afternoon)
	Afternoon 1 feedback (before logging off for the day)
	Sign in 8/12/22 (Name, Email, Optional Pronouns)
	Plotting and Programming in Python (Part 2 - Friday morning)
	Afternoon 2 feedback (before logging off for lunch)

