
Software Carpentry: Bash, Git and Python
(8/11-8/12/22, Virginia Tech)

Table of Contents

Software Carpentry: Bash, Git and Python (8/11-8/12/22, Virginia Tech)
Table of Contents
Sign in 8/11/22 (Name, Email, Optional Pronouns)
Before we start:
Workshop Overview
Automating Tasks with the Unix Shell (8/11 Morning)

Key Links
Notes

Morning 1 feedback (before logging off for lunch)
Plotting and Programming in Python (Part 1- Thursday afternoon)

Sign in 8/11/22 (Name, Email, Optional Pronouns)
●​ Nathaniel Porter, ndporter@vt.edu (helper) (he/him/his)
●​ Matthew Brown, brownm12@vt.edu (instructor) (he/him/his)
●​ , ashit02@vt.edu (student) (he/him/his) Ashit Harode
●​ Ernesto Urbaez, uernesto@vt.edu (Graduate Student) (he/him/his)
●​ Sabrina Amorim, asabrina@vt.edu (Graduate Student) (she/her/hers)
●​ Brandy Ayesu-Danso, brandyad@vt.edu (Graduate student) (she/her/hers)
●​ Scott Lucero, dslucero@vt.edu, (Research Faculty) (he/him/his)
●​ Akhileswar Yanamala, akhileswar@vt.edu (Graduate Student) (he/him/his)
●​ Festus Animah, aafestus@vt.edu (Graduate student) (he/him/his)
●​ Benedict Isaac, benedictisaac@vt.edu (Student) (he/him/his)
●​ Cesar Cardenas, cesarac1975@vt.edu (Graduate student) (he/him/his)
●​ Aditya Raj, araj@vt.edu (Grad student) (he/him/his)
●​ Mahyar Arani, mahyar@vt.edu (Graduate student) (he/him/his)
●​ Pavan Reddy, pavanreddy@vt.edu (Grad student) (He/Him)
●​ Tosin Ogunmayowa olutosin@vt.edu (Grad Student) (He/Him/His)
●​ Priyanka Bose, priyanka18@vt.edu (Grad Student) (she/her/hers)

mailto:ashit02@vt.edu
mailto:ndporter@vt.edu
mailto:brownm12@vt.edu
mailto:ashit02@vt.edu
mailto:uernesto@vt.edu
mailto:asabrina@vt.edu
mailto:brandyad@vt.edu
mailto:dslucero@vt.edu
mailto:akhileswar@vt.edu
mailto:aafestus@vt.edu
mailto:cesarac1975@vt.edu
mailto:araj@vt.edu
mailto:mahyar@vt.edu
mailto:pavanreddy@vt.edu
mailto:olutosin@vt.edu
mailto:priyanka18@vt.edu

Before we start:
●​ Follow setup instructions on workshop webpage
●​ Complete pre-workshop survey
●​ Sign in

Workshop Overview
●​ Workshop webpage: https://ndporter.github.io/2022-08-11-vt-swc-python-online/
●​ Code of Conduct
●​ Live Coding
●​ Instructors and Helpers
●​ No one left behind!

○​ Ask questions in chat or verbally
○​ Errors are a chance to learn ​​

Automating Tasks with the Unix Shell (8/11 Morning)

Key Links
Setup (data and software)

Notes
●​ Introducing the Shell

○​ Make sure you have the shell and have data downloaded from the setup link
○​ Most computing interactions today use graphical interfaces (GUIs) with menus

and clicking
○​ Some tasks require repeating similar processes over and over (sometimes

thousands of time)
○​ Shell programming helps to simplify repetitive tasks and automation
○​ Shells use only text to interact
○​ BASH is the most widely used shell
○​ Nelle’s Pipeline - we will be working with data where she needs to automate

processing lots of data on a short timeline
○​ ls : lists files and directories in the current directory

●​ Navigating Files and Directories
○​ pwd: print’s location (path) of current working directory

■​ Each OS has different directory structures but this is like a filing system
for where each file is located

○​ ls -F: the -F is an option, which in this case provides additional output to
distinguish directories from files (with the / at the end)

○​ clear: clear output from screen

https://ndporter.github.io/2022-08-11-vt-swc-python-online/
https://carpentries.typeform.com/to/wi32rS?slug=2022-08-11-vt-swc-python-online
https://ndporter.github.io/2022-08-11-vt-swc-python-online/
https://docs.carpentries.org/topic_folders/policies/code-of-conduct.html
http://swcarpentry.github.io/shell-novice
https://swcarpentry.github.io/shell-novice/setup.html
https://swcarpentry.github.io/shell-novice/01-intro/index.html
https://swcarpentry.github.io/shell-novice/02-filedir/index.html

○​ Getting help​
■​ Windows: [command] –help (ex: ls –help)
■​ Mac: man [command] (ex: man ls)

●​ Type ‘q’ to exit manual
○​ Modifying how commands work

■​ Options (e.g.ls -F -lh etc) change what the command does or outputs
●​ Options start with a -
●​ Multiple options can be combined with a single dash (like -lh)
●​ Order doesn’t matter

■​ Arguments (ls Desktop) provide additional information to a command -
like a directory other than the current directory to list the contents of

●​ Arguments are specified after the command and any options
(COMMAND -OPTIONS ARGUMENT)

○​ cd : change directory
■​ .. and . are special directories - . is the current directory while .. is up one

level
■​ You can change one level at a time, use multiple separated by a slash, or

use the full absolute path (from /users/ or /c/ etc)
■​ ‘cd -’ allows you to move to the immediate previous directory (and toggle

back and forth between two)
■​ ‘cd’ with nothing else or ‘cd ~’ will automatically return you to your home

directory
○​ Directories and files that begin with a ‘.’ are hidden by default

■​ To show in ls, use the -a option
○​ Tab-completion allows you to type part of a file or directory name and press tab

and it will auto-complete
●​ Working with Files and Directories

○​ mkdir : make one or more new (empty) directories
■​ Specify names as arguments (at least one)
■​ -p option allows making nested directories together

○​ Names
■​ Avoid spaces when possible
■​ Don’t begin with ‘-’
■​ Use only letters/numbers/./-/_ to avoid issues

○​ Nano
■​ Nano is a simple text editor that is typically available for basic text and

keyboard only editing
■​ Use CTRL-O to save and follow prompts
■​ CTRL-X exits (and prompts to save any unsaved changes)
■​ Call with `nano FILENAME`

○​ Moving files and directories
■​ mv : “move” can be used to change names or directories of a file
■​ mv current_file_path/current_file_name new_file_path/new_file_name

https://swcarpentry.github.io/shell-novice/03-create/index.html

■​ Move multiple files at once with `mv current_1 current_2 …
new_file_path/

●​ Notice no file names on the last one because each file will be
moved (and keep its name)

○​ Copy:
■​ For a file: cp current_path_and_file new_path_and_file
■​ For a directory: cp -r current_path new_path

●​ -r option required for directories
●​ Can create a new directory (but copying individual files will not)

○​ Remove
■​ rm current_path_and_file
■​ Deleting is forever - there’s no recycle bin to recover things you

delete
■​ Remove a directory with: `rm -r current_path`

●​ Be extra careful here - this will permanently delete everything in
the directory, even if it’s your home directory

■​ rm -i (interactive) requires you to confirm each file to be deleted
○​ Wildcards (pattern matching)

■​ Can be used in multiple commands (such as ls)
■​ * replaces any one or more character
■​ ? replaces exactly one character

●​ Other sections (not covered today but in curriculum)
○​ Pipes and Filters

■​ Pipes send the output of one command as input to another
■​ Filters help sort or select subsets of data
■​ Redirects can send output to a new file or append to the end of an

existing file
○​ Loops

■​ Allow repeating a set of operations on multiple inputs
○​ Scripts

■​ Allows saving sequence of commands to run repeatedly
■​ Can also take inputs that allow you to change options etc

○​ Finding things
■​ There are multiple ways to search files automatically (filenames or file

contents) including special expressions that allow custom strings

NEXT BREAK: 12:30-1:30 (lunch)

Morning 1 feedback (before logging off for lunch)
●​ What was helpful or went well?

○​ Following along with the instructor on my own system really helped me see the
result of discussion.

○​ Well explained
○​ Clear explanation with useful information
○​ Matt's pace and speed is really useful!

●​ What could have been better or was difficult/confusing?
○​ More time for scripts and loops would be useful. I think that these are very

powerful tools.
○​ More time on scripting and looping through file similar to the case study

discussed in the beginning of the course would have been great

Plotting and Programming in Python (Part 1- Thursday afternoon)
https://swcarpentry.github.io/python-novice-gapminder/

Python Documentation

●​ Running and Quitting
○​ In Anaconda, access JupyterLab through the Anaconda Navigator
○​ JupyterLab runs in your browser and basically keeps a Python session (kernel)

open in the background
○​ Command mode: Esc (gray)

■​ m: Markdown mode (write text)
■​ y: Code mode
■​ b: Make a new cell below current cell
■​ a: Make a new cell above current cell
■​ x: Delete the current cell
■​ z: Undo

○​ Edit mode: Return (blue outline)
■​ Write code or text
■​ Shift + Return executes contents of the cell
■​ Create comment in code: #

○​ Closing Jupyter Lab Notebook
■​ File -> Shut Down
■​ Or From Terminal: Control + c

●​ Variables and Assignment
○​ Use variables to store values

■​ age = 42
■​ first_name = “Sarah”
■​ Use print() to display values

●​ When you assign a value to a variable, nothing will print out to the
console.

●​ If you want to know what that value is, use print: print(first_name)
○​ Use an index to get a single character from a string

■​ 'helium'[0]

https://swcarpentry.github.io/python-novice-gapminder/
https://docs.python.org/3/
https://swcarpentry.github.io/python-novice-gapminder/01-run-quit/index.html
http://swcarpentry.github.io/python-novice-gapminder/02-variables/index.html

■​ Index begins as 0
○​ Slice to get a substring

■​ string[start:stop]
■​ 'sodium'[0:3]
■​ Begins at start and goes up to but not including the stop index.

○​ Find length of strings
■​ len()

●​ Data Types and Type Conversion
○​ Every value has a type

■​ Types control what operations (or methods) can be performed on a given
value.

■​ type(): Find the type of an object.
■​ Type dictates what you can do with different objects
■​ Compare

●​ print(5 - 3)
●​ print('hello' - 'h')

○​ Can use + and * to operate on strings
■​ full_name = “Sara” + “ “ + “Over”
■​ ‘=’ * 10

○​ Convert between numbers and strings
■​ str() to create string

●​ print(str(1) + '2')
■​ int() to create integer

●​ print(1 + int('2'))
○​ Can mix integers and floats freely in operations

■​ print('half is', 1 / 2.0)
■​ print('three squared is', 3.0 ** 2)

○​ Division in Python
■​ Integer division: 5 // 3
■​ Floating point division: 5 / 3
■​ Remainder division: 5 % 3

●​ Built-in Functions and Help
○​ A function may take zero or more arguments
○​ Every function returns something

■​ If the function doesn’t have a useful result to return, it usually returns the
special value `None`.

○​ max, min, and round functions
■​ max and min both work on strings and numbers
■​ But they must be given things that can be meaningfully compared. Cannot

combine strings and numbers in same call.
■​ round() can take two arguments: value and decimal places if desired

●​ round(3.712)
●​ round(3.712, 1)

○​ Method vs function

http://swcarpentry.github.io/python-novice-gapminder/03-types-conversion/index.html
http://swcarpentry.github.io/python-novice-gapminder/04-built-in/index.html

■​ Function: round(3.712)
■​ Method: my_string.swapcase()

○​ Getting help
■​ help(function-name)
■​ In Jupyter Notebook place the cursor near where the function is invoked

in a cell and hold down Shift + Tab
■​ function-name?
■​ Also consult the Python Documentation

○​ Python errors
■​ Syntax error

●​ Watch for missing parentheses
■​ Runtime error

●​ Libraries
○​ Must import a library module before using it

■​ import: Use import to load a library module
●​ import math

■​ Refer to things from the module as module_name.thing_name
●​ math.pi
●​ math.cos()

■​ Use help to learn about the contents of a library module
●​ help(math)
●​ A module must be imported/loaded to use help.

○​ Import specific items from a library module
■​ from math import cos, pi
■​ Now we can use pi and cos() without math. notation
■​ cos(pi)

○​ Create an alias for a library module
■​ import math as m
■​ m.cos(m.pi)
■​ This is commonly used for libraries that are frequently used or have long

names.
●​ An example is import pandas as pd

●​ Reading Tabular Data into DataFrames
○​ Use the Pandas library to do statistics on tabular data
○​ import pandas module

■​ import pandas as pd
■​ pd is common alias for pandas

○​ Read a csv data file with pd.read_csv()
■​ data = pd.read_csv('data/gapminder_gdp_oceania.csv')

○​ Use index_col to specify that a column’s values should be used as row headings
■​ data = pd.read_csv('data/gapminder_gdp_oceania.csv',

index_col='country')
○​ Investigate the aspects of the DataFrame

■​ data.info()

https://docs.python.org/3/
http://swcarpentry.github.io/python-novice-gapminder/06-libraries/index.html
http://swcarpentry.github.io/python-novice-gapminder/07-reading-tabular/index.html

○​ See the columns of the DataFrame
■​ data.columns
■​ Note that this is data, not a method. (It doesn’t have parentheses.)

○​ Transpose a DataFrame
■​ Columns become rows and rows become columns
■​ DataFrame.T

○​ Get summary statistics about the data
■​ data.describe()

○​ Inspecting the data
■​ Read in longer set of data

●​ americas = pd.read_csv('data/gapminder_gdp_americas.csv',
index_col='country')

■​ Look at the start of the data: americas.head()
●​ Only the first three lines: americas.head(n = 3)

■​ Look at the end of the data: americas.tail()
●​ Only the last three lines: americas.tail(n = 3)

○​ Put it all together
■​ americas.T.tail(n=3).T
■​ Transpose, get tail, and then transpose again
■​ Get last three columns

●​ Pandas DataFrames
○​ Subsetting DataFrames

■​ By position: DataFrame.iloc[..., ...]
●​ First column and first row: data.iloc[0, 0]

■​ By label: DataFrame.loc[..., ...]
●​ data.loc["Albania", "gdpPercap_1952"]

■​ Use : on its own to mean all columns or all rows
●​ All columns of a row: data.loc["Albania", :]
●​ All rows of a column: data.loc[:, "gdpPercap_1952"]

■​ Slices of DataFrames
●​ data.loc['Italy':'Poland', 'gdpPercap_1962':'gdpPercap_1972']
●​ With slicing, loc is inclusive at both ends, while iloc is inclusive at

the beginning and exclusive (does not include) the end point.
○​ Use comparisons to select data based on value

■​ Which values were greater than 10,000?
●​ data > 10000

■​ Boolean mask: Turn False into NaN (Not a Number)
●​ Defining a boolean mask: Anytime you apply a True/False

question to more than one piece of data (vector, dataframe, array),
it returns a boolean array of the same size as the data. So when
you use the mask, you're just saying keep only the data where the
condition is true.

●​ mask = data > 10000
●​ data[mask]

http://swcarpentry.github.io/python-novice-gapminder/08-data-frames/index.html

●​ This is useful because NaNs are ignored by operations like max,
min, average, etc.

●​ data[mask].describe()
○​ Group By: split-apply-combine

■​ Example of splitting countries in Europe by how often the GDP is above
or below the mean GDP.

■​ Create a boolean mask
●​ mask_higher = data > data.mean()

■​ Create a wealth score: How often was each country above or below the
mean

●​ wealth_score = mask_higher.aggregate('sum', axis=1) /
len(data.columns)

●​ Plotting
○​ matplotlib

■​ matplotlib tutorial
■​ matplotlib is the most widely used scientific plotting library in Python
■​ import matplotlib.pyplot as plt

○​ Making our first plot
■​ x and y values

●​ time = [0, 1, 2,​ 3]
●​ position = [0, 100, 200, 300]

■​ Make the plot and add axis labels
●​ plt.plot(time, position)
●​ plt.xlabel('Time (hr)')
●​ plt.ylabel('Position (km)')

○​ Making a plot with Pandas data
■​ data = pd.read_csv('data/gapminder_gdp_oceania.csv',

index_col='country')
■​ Prepare the data for plotting

●​ Need to turn column names into integers
●​ Get the years

○​ years = data.columns.str.strip('gdpPercap_')
●​ Rename the columns

○​ data.columns = years.astype(int)
■​ Make the plot

●​ data.loc['Australia'].plot()
○​ Select and transform data, then plot it

■​ data.T.plot()
■​ plt.ylabel('GDP per capita')

○​ Can change the style of plots
■​ plt.style.use('ggplot')
■​ data.T.plot(kind='bar')
■​ plt.ylabel('GDP per capita')

○​ Saving plots

http://swcarpentry.github.io/python-novice-gapminder/09-plotting/index.html
https://matplotlib.org/stable/tutorials/introductory/pyplot.html

■​ When run in the same code chunk
●​ plt.savefig('my_figure.png')

■​ Alternative to save file as variable and then save
●​ Create plot
●​ Save last figure: fig = plt.gcf()

○​ Short for get current figure
●​ fig.savefig('my_figure.png')

Afternoon 1 feedback (before logging off for the day)
●​ What was helpful or went well?
●​ What could have been better or was difficult/confusing?

Sign in 8/12/22 (Name, Email, Optional Pronouns)
●​ Jesse Sadler, jrsadler@vt.edu (instructor) (he/him/his)
●​ Ellie Kohler, elliek@vt.edu (helper) (she/her/hers)
●​ Ernesto Urbaez, uernesto@vt.edu (Graduate Student) (he/him/his)
●​ Brandy Ayesu-Danso, brandyad@vt.edu (Graduate Student)(she/her/hers)
●​ Aditya Raj, araj@vt.edu (Grad student) (he/him/his)
●​ Benedict Isaac, benedictisaac@vt.edu (Graduate Student)
●​ Priyanka Bose, priyanka18@vt.edu (Grad Student) (she/her/hers)
●​ Cesar Cardenas, cesarac1975@vt.edu (Graduate student) (he/him/his)
●​ Ashit harode, ashit02@vt.edu (he/him)

Plotting and Programming in Python (Part 2 - Friday morning)
https://swcarpentry.github.io/python-novice-gapminder/

Python Documentation

●​ Questions:

○​ When the notebook opened this morning there was unexpectedness.- This is a
function of the Jupyter Notebook, as you can edit out of order

●​ Running and Quitting

○​ Command mode: Esc (gray)
■​ m: Markdown mode (write text)

mailto:elliek@vt.edu
mailto:uernesto@vt.edu
mailto:brandyad@vt.edu
mailto:araj@vt.edu
mailto:benedictisaac@vt.edu
mailto:priyanka18@vt.edu
mailto:cesarac1975@vt.edu
mailto:ashit02@vt.edu
https://swcarpentry.github.io/python-novice-gapminder/
https://docs.python.org/3/
https://swcarpentry.github.io/python-novice-gapminder/01-run-quit/index.html

■​ y: Code mode
■​ b: Make a new cell below current cell
■​ a: Make a new cell above current cell
■​ x: Delete the current cell
■​ z: Undo

○​ Edit mode: Return (blue outline)
■​ Write code or text
■​ Shift + Return executes contents of the cell
■​ Create comment in code: #

○​ Closing Jupyter Lab Notebook
■​ File -> Shut Down
■​ Or From Terminal: Control + c

●​ Lists
○​ Create a list

■​ A list stores many values in a single structure
■​ Created with square brackets [],
■​ items within are separated by commas

●​ len(list_name) #how many items/values are in a list
○​ Manipulating lists

■​ Lists can be sliced and indexed like strings
■​ Replacing and appending values with functions

●​ list_name.append() #appending items to the list to make it longer
●​ list_name.extend() #adding a list ot a list
●​ del list_name[index] #remove items from a list

■​ Empty lists contains no values []
○​ Characters vs lists

■​ Character strings are immutable- cannot replace individual characters
within a string.

■​ Lists and characters can both be indexed
●​ For Loops

○​ For loop tutorial and syntax
for __ in ___:
 command

■​ The loop executes commands once for each value in a collection
■​ A for loop is made of collection, loop variable, body
■​ Formatting-

●​ must end with a colon
●​ body must be indented

○​ Body can contain many statements.
●​ Loop variable names can be anything

○​ Range- iterate over a sequence of numbers
​ for ___ in range (,):
​ command

■​ a range is not a list, and does not act the same way

http://swcarpentry.github.io/python-novice-gapminder/11-lists/index.html
http://swcarpentry.github.io/python-novice-gapminder/12-for-loops/index.html

○​ Accumulator- turn many values into one
■​ Initialize by creating a variable that equals 0, an empty string, or an empty

list.
●​ Conditionals

○​ if statements -
■​ Controls whether a block of code is executed

●​ if
○​ if it is true, execute command
○​ goes in the beginning

●​ else
○​ follows if.
○​ If a condition is not true, execute command

●​ elif
○​ short for else if,
○​ use when you want to provide several alternative choices
○​ goes in between if and else
○​ can have as many elifs as you want

■​ Often used inside loops
■​ Ordering matters- the branches of a conditional are tested in order of the

written command.
●​ Conditions are tested once (until it’s true) and in order
●​ Variables can evolve within a loop

○​ Compound relations
■​ and

●​ If a statement hits every condition
■​ or

●​ If a statement has one of the conditions true

●​ Looping Over Data Sets
○​ For loops can read in several files of data

■​ Can call files individually
○​ Glob tutorial

■​ Glob means matching a set of files with a pattern
●​ * match zero or more characters
●​ ? match exactly 1 character

import glob
Glob.glob(“*.txt”) #matches all files in the directory that has a
name ending in .txt

■​ Use glob and for to process batches of files
for filename in glob.glob (‘folder/*.csv):
 data = pd.read_csv(filename)

●​ Writing Functions
○​ Reuse code- if you write the same code more than twice, you may want to think

about writing a function. Iterative process

http://swcarpentry.github.io/python-novice-gapminder/13-conditionals/index.html
http://swcarpentry.github.io/python-novice-gapminder/14-looping-data-sets/index.html
http://swcarpentry.github.io/python-novice-gapminder/16-writing-functions/index.html

○​ Define a function
■​ def function_name(parameters):

​ ​ ​ command / block of code

■​ Defining a function does not run it

○​ Arguments
■​ Matched to parameters in definition
■​ Functions are most useful when they can operate on different data.
■​ Specify parameters when defining a function.

●​ These become variables when the function is executed.
●​ Are assigned the arguments in the call (i.e., the values passed to the

function).
●​ If you don’t name the arguments when using them in the call, the

arguments will be matched to parameters in the order the
parameters are defined in the function.

○​ Return command
■​ return()
■​ Give the value back to the caller in a function.
■​ Saves to an object/ variable

Afternoon 2 feedback (before logging off for lunch)
●​ What was helpful or went well?
●​ What could have been better or was difficult/confusing?

Version Control with Git (Friday afternoon)
https://swcarpentry.github.io/git-novice/index.html

●​ Automated Version Control
○​ Why you should use version control.
○​ Version control systems start with a base version of the document and then

record changes you make each step of the way.
■​ Power of separating changes from the document itself.
■​ Opens ability for multiple people to make changes at the same time.

○​ Version control provides
■​ Record of changes, of commits
■​ Complete history of commits of a project and their metadata make up a

repository.
●​ Setting up Git

○​ Info needed to set up Git

https://swcarpentry.github.io/git-novice/index.html
https://swcarpentry.github.io/git-novice/01-basics/index.html
https://swcarpentry.github.io/git-novice/02-setup/index.html

■​ our name and email address
●​ `git config --global user.name "Vlad Dracula"`
●​ `git config --global user.email "vlad@tran.sylvan.ia"`

■​ preferred text editor
●​ `git config --global core.editor "nano -w"`

■​ and that we want to use these settings globally (i.e. for every project).
■​ Default branch name

●​ `git config --global init.defaultBranch main`
○​ Check your settings

■​ `git config --list`
○​ Get help on configuration commands

■​ `git config -h` or `git config --help`
●​ Creating a Repository

○​ Create a repository
■​ `cd ~/Desktop`
■​ `mkdir planets`

○​ Initiate git repository
■​ `git init`
■​ `.git` file

○​ Make sure you are on branch main
■​ Check branch name: `git branch --show-current`
■​ Create and move to main branch: `git checkout -b main`

○​ Check everything
■​ `git status`

●​ Tracking Changes
○​ Create mars.txt
○​ `git add`
○​ `git commit -m ""`

■​ Writing good commit messages.
○​ `git log`
○​ Make another change
○​ `git diff`
○​ Go over two-step process of committing

■​ Staging area with `git add`
■​ Actual commit with `git commit`
■​ Advice not to use `git commit -a` but to commit files manually.

○​ Make another change
■​ Stage changed file
■​ `git diff --staged`

○​ `git log`
■​ Limit size of log: `git log -1`
■​ `git log --oneline`
■​ `git log --oneline --graph`

○​ git and directories

mailto:vlad@tran.sylvan.ia
https://swcarpentry.github.io/git-novice/03-create/index.html
https://swcarpentry.github.io/git-novice/04-changes/index.html

■​ Git does not track directories on their own, only files within them.
●​ Create a directory and run `git status`

■​ Add files in a directory with `git add directory-name`
○​ Committing multiple files

■​ Make change to mars.txt
■​ Create venus.txt:

●​ `echo "Venus is a nice planet and I definitely should consider it as
a base." > venus.txt`

■​ `git add mars.txt venus.txt`
■​ `git commit`

●​ Exploring History
○​ `HEAD`
○​ Exploring history

■​ `git diff HEAD mars.txt` makes explicit `git diff` because you are doing
`diff` based on the `HEAD`.

■​ dff` with previous commits
●​ `git diff HEAD~1 mars.txt`

■​ `git show`
●​ Shows the changes made at an older commit as well as the

commit message.
■​ Use of commit ID

●​ `git diff 8cc62aa84be902807ee058493e689fda64843829 mars.txt`
●​ Way too long

■​ Use of SHA (first 7 characters of ID)
●​ `git diff 8cc62aa mars.txt`

○​ Restoring history
■​ Restore modified document to `HEAD`

●​ `git checkout HEAD mars.txt`
●​ Also works if changes are staged.

■​ Restore document to previous commit
●​ `git checkout c0881d2 mars.txt`
●​ This places changes in the staging area.
●​ Check with `git status`

■​ Go back to `HEAD`
●​ `git checkout HEAD mars.txt`

○​ Detached `HEAD`
○​ It is important to remember that we must use the commit number that identifies

the state of the repository before the change we’re trying to undo.
○​ Explore history of one document

■​ `git log mars.txt`
■​ `git log --patch mars.txt`: See both commit messages and differences.

●​ Ignoring Things
○​ `nano .gitignore`

■​ Create and add to `.gitignore`

https://swcarpentry.github.io/git-novice/05-history/index.html
https://swcarpentry.github.io/git-novice/06-ignore/index.html

■​ Add and commit `.gitignore` so that others can have the same file.
○​ Using `.gitignore` helps us avoid accidentally adding files to the repository that

we don’t want to track.
■​ Force adding ignored files: `git add -f a.dat`
■​ Show ignored files: `git status --ignored`

○​ Including specific files
■​ `!final.dat `

●​ Remotes in GitHub
○​ 1. Create a remote repository

■​ Login to GitHub
■​ Create a new repository with the same name as your git repository
■​ Do not add README, .gitignore, or license.
■​ This essentially creates a git repository on GitHub's servers.

○​ 2. Connect local to remote repository
■​ `git remote add origin git@github.com:vlad/planets.git`
■​ Check with `git remote -v`

○​ 3. Create an SSH key pair
■​ Check if key pairs already exist on computer

●​ `ls -al ~/.ssh`
■​ Create the keys

●​ `ssh-keygen -t ed25519 -C "vlad@tran.sylvan.ia"`
○​ `-t`: specifies which algorithm to use
○​ `-C`: attaches a comment

●​ Hit ⏎ to use default file.
●​ Enter passphrase

■​ Check that key pairs were created
●​ `ls -al ~/.ssh`

■​ Copy the public key to GitHub
●​ Get public key

○​ `cat ~/.ssh/id_ed25519.pub`
●​ Go to GitHub

○​ Settings -> SSH and GPG Keys -> New SSH key
○​ Add name and copy public key

●​ Connect
○​ `ssh -T git@github.com`

○​ 4. Push local changes to a remote
■​ `git push origin main`
■​ Alternative to use `-u` to set origin as upstream (same as

`--set-upstream-to`)
●​ `git push -u origin main`

○​ 5. Pull changes
■​ `git pull origin main`

●​ Collaborating
●​ Conflicts

https://swcarpentry.github.io/git-novice/07-github/index.html
mailto:git@github.com
mailto:vlad@tran.sylvan.ia
https://swcarpentry.github.io/git-novice/08-collab/index.html
https://swcarpentry.github.io/git-novice/09-conflict/index.html

	Software Carpentry: Bash, Git and Python (8/11-8/12/22, Virginia Tech)
	Table of Contents
	Sign in 8/11/22 (Name, Email, Optional Pronouns)
	Before we start:
	Workshop Overview
	Automating Tasks with the Unix Shell (8/11 Morning)
	Key Links
	Notes

	Morning 1 feedback (before logging off for lunch)
	Plotting and Programming in Python (Part 1- Thursday afternoon)
	Afternoon 1 feedback (before logging off for the day)
	Sign in 8/12/22 (Name, Email, Optional Pronouns)
	Plotting and Programming in Python (Part 2 - Friday morning)
	Afternoon 2 feedback (before logging off for lunch)

