
Apache Kafka for Beam Python SDK

Chamikara Jayalath
April 2018

Apache Kafka is one of the heavily used streaming software platforms available today. Apache
Beam currently has a Kafka connector (a source and a sink) for Java SDK. Current Kafka
source for Java SDK is developed using the Java UnboundedSource API while Kafka sink is
developed primarily using Beam ParDo transforms.

Until recently, Beam Python SDK did not offer an API for defining unbounded sources. But we
recently added support for Splittable DoFn API which serves this purpose. Additionally, we
added support for executing Splittable DoFns using DirectRunner. Support for other runners
over Fn API is currently under active development.

Many users of Beam Python SDK have requested support for Kafka. Given that we have
necessary API support for adding a new unbounded source and a sink I believe this will be a
useful addition to Python SDK. In addition to this, I believe that a new Splittable DoFn based
Kafka source will serve as a good example for future developers who wish to add new
unbounded sources based on the same API.

Cross-language transforms
There are currently discussions on supporting cross-language transforms in Beam using the
portability framework which will in the future allow, among other things, the ability to use existing
Java IO transforms in Python SDK. The exact scope and limitations of this feature are yet to be
determined. Even with this planned feature, I believe Beam community will significantly benefit
from having a Python SDK version of Kafka connector. I have listed some of the benefits below.

●​ Users might find it useful to have at least one unbounded source and sink combination
implemented in Python SDK and Kafka is the streaming system that makes most sense
to support if we just want to add support for only one such system in Python SDK.

●​ Not all runner deployments might support cross-language IO. Also some
user/runner/deployment combinations might require an unbounded source/sink
implemented in Python SDK. An example might be a constrained deployment where a
single Java runner harness instance connects to a cluster of Python SDK harness
instances.

●​ We recently added Splittable DoFn support to Python SDK. It will be good to have at
least one production quality Splittable DoFn that will server as a good example for any
users who wish to implement new Splittable DoFn implementations on top of Beam
Python SDK.

●​ Cross-language transform feature is currently is in the initial discussion phase and it
could be some time before we can offer existing Java implementation of Kafka for
Python SDK users.

●​ Cross-language IO might take even longer to reach the point where it's fully equivalent in
expressive power to a transform written in the host language - e.g. supporting
host-language lambdas as part of the transform configuration is likely to take a lot longer
than "first-order" cross-language IO. KafkaIO in Java uses lambdas as part of transform
configuration, e.g. timestamp functions.

Another alternative is to represent the transform in the form of a well-known URN and a payload
and implement/override the transform natively in each runner and not maintain a Beam
implementation at all. But having a Beam implementations of an IO connector such as Kafka
has many benefits. For example,

●​ IO connector will offer same behavior and feature set across various runners/SDKs.
●​ Beam community will be able to view/modify/improve the IO connector.
●​ existing IO connectors will serve as examples for users who wish to develop new IO

connectors.
●​ More runners will be able to execute the users pipelines that use the IO connector.

Features of Java Kafka Connector
Existing Java connector supports various advanced features on top of basic support for reading
from and writing to Kafka. Below I have given the features of Java Kafka source and sink. We
will be implementing a subset of these features in the first version of the Python Kafka
connector. Eventually we can add additional features based on the user demand.

Advanced Features of Java Kafka source
●​ Multiple ways to handle timestamp (log append time, processing time, create time)
●​ Support for reporting backlog
●​ Reading batches of messages in the background through extra threads
●​ Caching the reader object
●​ Exactly once delivery
●​ Support for multiple versions of Kafka through an additional abstraction layer
●​ Committing finalized offsets to Kafka to improve performance when restarting jobs.

Advanced Features of Java Kafka sink
●​ Exactly once semantics when writing.
●​ Support for custom timestamp functions

Client libraries
Currently there are three main Kafka client libraries available for Python.

●​ kafka-python [1]
●​ pykafka [2]
●​ confluent-kafka [3]

Below I compare various aspects of these client libraries.

Ease of deployment
kafka-python is a pure Python implementation. Confluent kafka is backed by a C library
librdkafka [4]. pykafka has a pure Python implementation but can also be customized to utilize
the librdkafka library. Pure Python implementations will be easier to use when it comes to
deployment. C libraries will require a more advanced deployment setup and not all runners may
support that. pykafka has the additional advantage of supporting both pure-Python and C
library-backed versions without having to significantly to update the user of the library.

Performance
Not surprisingly, C based libraries (confluent-kafka and pykafka+librdkafka) offer the highest
performance for both message publication and consumption. But pure Python libraries offer very
acceptable performance which should be sufficient for most users. I refer to a previous article [5]
that compares performance of various Kafka client libraries for performance of pykafka backed
by librdkafka and for performance of confluent-kafka. I ran additional experiments to compare
the performance of two pure Python client libraries.

All experiments were run on a MacBook pro with a 2.2 GHz Intel Core I7 processor and 16GB of
memory. Kafka deployment was a single node Kafka broker and a ZooKeeper deployment in the
same machine. Each data point is the average of five runs where each run produced or
consumed 1000000 messages. I used latest available versions of kafka-python (1.4.2) and
pykafka (2.7.0). Kafka deployment was a single node broker of version 0.9.0.0.

Producer performance

Message size = 10 bytes

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 11064 0.11

pykafka
(msgs/sec)

25760 0.25

Message size = 100 bytes

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 10202 0.97

pykafka
(msgs/sec)

14340 1.37

Message size = 1KB

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 6539 6.39

pykafka
(msgs/sec)

2459 2.4

Consumer performance

Message size = 10 bytes

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 42390 0.40

pykafka
(msgs/sec)

19893 0.19

Message size = 100 bytes

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 41981 4

pykafka
(msgs/sec)

20637 1.97

Message size = 1KB

Message size (Bytes) # of messages/sec MBs/sec

kafka-python (msgs/sec) 41071 40.11

pykafka
(msgs/sec)

21208 20.71

In general, kafka-python exhibited better performance compared to pure-Python pykafka. One
outlier was publishing really small (100 bytes or less) messages where pykafka performed
better. kafka-python consumer was approximately 2 times faster compared to pykafka. So if we
compare pure-Python implementations kafka-python seems to be better. If we use C-based
deployment though, pykafka seems to be performing much better. See [5] for benchmarks

related to this. It is also to be noted that the performance exhibited by pure-Python Kafka
libraries may be enough for most use-cases.

Maintainability
All three libraries are well maintained and have had active commits from many contributors in
the recent past. confluent-kafka and pykafka are backed by companies Confluent and parse.ly
respectively.

API and Feature set
Confluent Kafka is more recent and tries to maintain an API similar to the Java client library from
the same company. I read many comments about this API being hard to use for Python
developers and not being well documented. kafka-python also offers a Java-centric API but is
better documented and easier to use. pykafka offers the most pythonic API and is well
documented.

All three libraries offer core support for reading from and writing to a Kafka deployment. For
developing an efficient Kafka source, we need to ability to read a Kafka partition from a given
offset. All three client libraries support this.

Library of choice

I propose choosing kafka-python for implementing Kafka connector for Python SDK.

We previously discussed choosing between pure-Python and C based client libraries for Python
IO [6] and decided to choose a pure Python version due to ease of deployment. I think this
argument applies to Kafka client libraries as well. Even though C based libraries significantly
outperforms pure-Python implementations, deployment of C based libraries might be
complicated for certain runners and deployments. Moreover I believe that performance exhibited
by pure-Python libraries will enough for most of the Python Kafka users.

Out of the two pure-Python libraries kafka-python is about twice as performant across all
message sizes considered when it comes to message consumption and kafka-python
outperformed pykafka for message publication for all but extremely small message sizes.

Poposed API
I created a PoC [7] that illustrates the proposed API of the connector. I included a set of features
that I believe will be useful to include in the first version of the connector. Based on user
feedback we can add to this feature-set in the future development iterations.

[1] https://pypi.org/project/kafka-python/

https://pypi.org/project/kafka-python/

[2] https://pypi.org/project/pykafka/
[3] https://pypi.org/project/confluent-kafka/
[4] https://github.com/edenhill/librdkafka
[5] http://activisiongamescience.github.io/2016/06/15/Kafka-Client-Benchmarking/
[6]
https://docs.google.com/document/d/1-uzKf4VPlGrkBMXM00sxxf3K01Ss3ZzXeju0w5L0LY0/edit
?usp=sharing
[7]
https://github.com/chamikaramj/beam/commit/2a126d26ddf637fe0f8d270877b3aec64e920192

https://pypi.org/project/pykafka/
https://pypi.org/project/confluent-kafka/
https://github.com/edenhill/librdkafka
http://activisiongamescience.github.io/2016/06/15/Kafka-Client-Benchmarking/
https://docs.google.com/document/d/1-uzKf4VPlGrkBMXM00sxxf3K01Ss3ZzXeju0w5L0LY0/edit?usp=sharing
https://docs.google.com/document/d/1-uzKf4VPlGrkBMXM00sxxf3K01Ss3ZzXeju0w5L0LY0/edit?usp=sharing
https://github.com/chamikaramj/beam/commit/2a126d26ddf637fe0f8d270877b3aec64e920192

	Apache Kafka for Beam Python SDK
	Cross-language transforms
	Features of Java Kafka Connector
	Advanced Features of Java Kafka source
	Advanced Features of Java Kafka sink

	Client libraries
	Ease of deployment
	Performance
	Producer performance
	
	Consumer performance

	Maintainability
	API and Feature set
	Library of choice

	Poposed API

