

Google Summer of Code 2021 Proposal

Implement Brandes’ Betweenness
Centrality in pgRouting using Boost

Graph Library

Proposed by
Saurav Uppoor

Table of content:

1.​ Contact Details ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

2.​ Title​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

3.​ Brief Project Description​​ ​ ​ ​ ​ ​ ​ 3

4.​ State of the Project Before GSoC​ ​ ​ ​ ​ ​ 3

5.​ Benefits to Community​ ​ ​ ​ ​ ​ ​ ​ 3

6.​ Deliverables​​ ​ ​ ​ ​ ​ ​ ​ ​ 4

7.​ Timeline​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4
a.​ Community Bonding Period​ ​ ​ ​ ​ ​ 4
b.​ Official Coding Period​ ​ ​ ​ ​ ​ ​ 4

8.​ Do you understand this is a serious commitment, equivalent to a full time

paid summer internship or summer job?​ ​ ​ ​ ​ 6

9.​ Any known time conflicts during the official coding period?​ ​ 6

10.​Studies​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 6
a.​ What is your school and degree?​​ ​ ​ ​ ​ 6
b.​ Would your application contribute to your ongoing studies/degree? If so,

how?​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 6

11.​Programming and GIS​ ​ ​ ​ ​ ​ ​ ​ 6
a.​ Computing experience​ ​ ​ ​ ​ ​ ​ 6
b.​ GIS experience as a user​ ​ ​ ​ ​ ​ ​ 7
c.​ GIS programming and other software programming​ ​ ​ 7
d.​ Briefly mention and link to former open-source contributions​ ​ 7

12.​GSoC Participation`​ ​ ​ ​ ​ ​ ​ ​ 7

a.​ Have you participated in GSoC before?​ ​ ​ ​ ​ 8
b.​ Have you applied but were not selected? When?​ ​ ​ 8
c.​ Have you submitted/will you submit another proposal for this year's GSoC

to a different org?​ ​ ​ ​ ​ ​ ​ ​ 8

1

13.​pgRouting Application Requirements​​ ​ ​ ​ ​ 8

14.​Detailed Proposal​ ​ ​ ​ ​ ​ ​ ​ ​ 8
a.​ Proposed Documentation​ ​ ​ ​ ​ ​ ​ 8

i.​ Proposed Description​ ​ ​ ​ ​ ​ 8
ii.​ Proposed Signature​​ ​ ​ ​ ​ ​ 9
iii.​ Proposed Query​ ​ ​ ​ ​ ​ 10
iv.​ Sample Output​ ​ ​ ​ ​ ​ 10

b.​ Theory​ ​ ​ ​ ​ ​ ​ ​ 11
c.​ Approach​ ​ ​ ​ ​ ​ ​ ​ 12
d.​ Code ​​ ​ ​ ​ ​ ​ ​ ​ 12
e.​ Sample Testing​ ​ ​ ​ ​ ​ ​ 13

i.​ Example 1​ ​ ​ ​ ​ ​ ​ 13
ii.​ Example 2​ ​ ​ ​ ​ ​ ​ 17

f.​ Proposed Directory Structure and Files​ ​ ​ ​ 21
g.​ Applications​ ​ ​ ​ ​ ​ ​ ​ 21

15.​Future Scope​ ​ ​ ​ ​ ​ ​ ​ 24

16.​References​ ​ ​ ​ ​ ​ ​ ​ ​ 25

17.​Resume​ ​ ​ ​ ​ ​ ​ ​ ​ 25

1. Contact Details
​ Name: ​ Saurav Uppoor

​ Country: ​ India

​ Email:​​ sauravsuppoor@gmail.com

​ Phone:​ +91 8408867834

​ Location:​ Mumbai, India, +5:30 GMT

​ Github:​ https://github.com/sauravUppoor

​ Linkedin:​ https://www.linkedin.com/in/sauravuppoor/

2

mailto:sauravsuppoor@gmail.com
https://github.com/sauravUppoor
https://www.linkedin.com/in/sauravuppoor/

2. Title
Implement Brandes’ Betweenness Centrality in pgRouting using Boost Graph Library.

3. Brief Project Description

My project will focus on implementing Brandes’ Betweenness Centrality algorithm as
an addition to the current set of pgRouting algorithms during the GSoC ‘21 period.

Among various types of centralities in graph theory, betweenness centrality () is a
measure of central positioning of a node based on the shortest paths passing through
that particular node. Brande’s algorithm is available in the Boost Graph Library (BGL)
and can be found here. Centrality can be computed both for weighted and unweighted
graphs using this algorithm. The running time of this algorithm is

.

4. State of the Project Before GSoC

Currently, pgRouting does not have an algorithm to find the centralities in a graph.

●​ Brandes’ betweenness centrality is a measure of central positioning of a node
based on the shortest paths. Although pgRouting has some shortest path
algorithms implemented, there doesn’t exist any standard algorithm to compute
the centralities, especially the betweenness centrality.

5. Benefits to Community

The algorithm finds its applications in a variety of real scenarios. Below are a few:
●​ Higher the value of betweenness centrality for a node/edge means higher the

amount of traffic (like vehicular, cyclists, public etc) passing through that
particular node. This can be used for better resource allocations such as
maintenance, infrastructure upgrade.

●​ Betweenness centrality is one of the most important means of measuring
centrality since it helps us derive other centrality measures like closeness, graph
and stress centrality from it and help us cluster the node as per these values.

●​ In network theory and telecommunication, a node with higher betweenness
centrality means more control over the graph since more information passes
through that node.

3

https://www.codecogs.com/eqnedit.php?latex=C_b#0
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/betweenness_centrality.html
https://www.codecogs.com/eqnedit.php?latex=O(V*E%20%2B%20V*(V%2BE)*logV)#0

6. Deliverables

1.​ Implementation of Brandes’ Betweenness Centrality algorithm: I plan to
create a function pgr_brandesBetweennessCentrality() in pgRouting
which will return a vector of values of type float signifying centralities of each
node. Based on the number of parameters provided, betweenness centrality can
be calculated for directed and undirected graphs.

2.​ Documentation and tests for the above function: I need to prepare the

required helper functions and header files along with creating documentations
and pgTap tests for the proposed function. Also, I need to prepare a report for
each evaluation.

7. Timeline

Community Bonding Period (May 17, 2021 - June 7, 2021)

●​ Introduce myself to the community, interact and discuss with the mentor(s) the
idea to be implemented.

●​ Study the directory structure of the project and understand the standards for
developing and testing.

●​ Learn about generating documentation and adding examples to them.
●​ Run the pgTap tests and create some tests for the already implemented

pgRouting functions, if possible.
●​ Create a wiki page for tracking weekly progress.
●​ Gain an understanding of the integration of PostgreSQL with Boost C++ in

pgRouting for data storage and computation.

Official Coding Period
First Coding Phase

Time Period Estimated
Time

Proposed Work

Week 1
(June 7 - June 13)

21 ●​ Design pgr_brandesBetweennessCentrality()
function.

Week 2
(June 14 - June 20)

16 ●​ Create a basic skeleton for C,C++,SQL code
and for documentation and testing.

4

Week 3
(June 21 - June 27)

21 ●​ Read data using SQL.
●​ Create C containers for passing SQL data to

C++ containers for processing.

Week 4
(June 28 - July 4)

21 ●​ Creation of suitable C++ containers for SQL
data for Boost processing.

Week 5
(July 5 - July 11)

21 ●​ Process the data using Boost.
●​ Create a report for the first phase.

Total 100

●​ Phase 1 Evaluation:

○​ Submit a report for evaluation.
○​ Mentors evaluate me.

Second Coding Phase

Time Period Estimated
Time

Proposed Work

Week 6
(July 12 - July 18)

21 ●​ Work on the feedback provided during the first
evaluation.

●​ Transform the results to C containers for
passing to SQL.

Week 7
(July 19 - July 25)

21 ●​ Write meaningful pgTap tests for the proposed
function (no crash test, edge cases, inner
query tests etc).

Week 8
(July 26 - July 1)

21 ●​ Prepare user documentation.
●​ Fix any bugs/problems arising in the code

base.

Week 9
(August 2 - August 8)

21 ●​ Create queries for documentation using the
pgRouting sample data.

Week 10
(August 9 - August
15)

21 ●​ Integrate the work done to the pgRouting main
repository.

●​ Prepare the final report.

Total 105

●​ Final Evaluation:

○​ Submit the complete project along with the required functions, tests and
documentation.

○​ Submit final report and evaluation of mentors.

5

8. Do you understand this is a serious commitment,
equivalent to a full-time paid summer internship or summer
job?

​ Yes, I understand that this is a serious commitment and is equivalent to a full
time paid summer internship or job. I assure you that I will work with full diligence and
comply with the given deadlines. I will try my best to maintain, test and contribute to this
pgRouting even after the SoC period. I really look forward to contributing to pgRouting
and implementing my proposed idea.

9. Do you have any known time conflicts during the official
coding period?

​ Apart from my academic studies, I don’t have any major known time conflicts
during the coding period. I will be able to devote at least 3 hours per day except for the
second week of the coding period and hence have reduced the time estimate above.

10. Studies

What is your school and degree?
●​ School: Thadomal Shahani Engineering College, University of Mumbai
●​ Degree: Bachelor of Engineering in Computer Engineering

Would your application contribute to your ongoing studies/degree? If so, how?
​ Yes, contributing to pgRouting falls in line with my current studies in multiple
ways. I will be able to get acquainted with the practical use of various software
engineering practices and models, which I am currently studying in semester 6. Also,
having studied various courses like Graph Theory, Open Source Technology Lab,
Algorithms, Database Management etc, I will be able to apply my learnings directly in
this project.

11. Programming and GIS

Computing Experience
●​ Programming Languages: C, C++, Java, Python, PHP
●​ Database: PostgreSQL, MySQL
●​ Tools: Git
●​ Operating System: Windows 10, Ubuntu 20.04

6

●​ Relevant Courses: Discrete Mathematics, Analysis of Algorithms, Database
Management, Object Oriented Programming Methodology, Open Source
Technology

GIS experience as a user
●​ I have tried OpenStreetMap & OsmAnd apps for navigation and its offline

support.
●​ I have also tried various routing functionalities provided by pgRouting and

postGIS.

GIS programming and other software programming
●​ Working on Encryption Library, C++ implementations of various encryption

algorithms, as course project for Cryptography and System Security - Code

●​ CG-Pathfinder, Dijkstra’s algorithm visualiser built using C++ as a course project
for Computer Graphics - Code

●​ UpGrade, a web application for students and teachers to conduct tests and

upload assignments - Code

●​ Caruide, voice-controlled desktop application for career-related information built
using python and APIs - Code

​
●​ Solved over 1000 algorithmic problems on CodeForces, CodeChef, Atcoder,

HackerRank - StopStalk Profile

Briefly mention and link to former open-source contributions
●​ Refactored code, created tests and documentation for

‘TheAlgorithms/C-Plus-Plus’ during Hacktoberfest 2020 - PR#1, PR#2

●​ Contributed to building the user interface for Product Social - Code

●​ Redesigning college committee webpage as a frontend design team member -
Code

●​ Created a repository containing intermediate C++ notes and codes - Code

12. GSoC Participation

7

https://github.com/sauravUppoor/Blowfish
https://github.com/sauravUppoor/CG-Pathfinder
https://github.com/sauravUppoor/UpGrade
https://github.com/sauravUppoor/Blind-Friendly-Career-Guidance-App
https://www.stopstalk.com/user/profile/rooppus
https://github.com/TheAlgorithms/C-Plus-Plus
https://github.com/TheAlgorithms/C-Plus-Plus/pull/1335
https://github.com/TheAlgorithms/C-Plus-Plus/pull/1273
https://github.com/Poornartha/ProductSocial
https://github.com/sauravUppoor/Codecell-UI-redesign
https://github.com/sauravUppoor/cpp_notes

Have you participated in GSoC before?
No, I haven’t participated in GSoC before.

Have you applied but were not selected? When?
No. This is my first time applying for GSoC.

Have you submitted/will you submit another proposal for this year's GSoC to a

different org? Which one?
No, I will be submitting only one proposal for this year’s GSoC, for OSGeo.

13. pgRouting Application Requirements

pgRouting application requirements are mentioned here -
https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas:-2021#pgrouting-application-re
quirements

Links for the tasks:

●​ Task 1: Intent of application

●​ Task 2: Experience with Git and Github
○​ Task 2: Pull request

●​ Task 3: Build pgRouting locally

●​ Task 4: Get familiar with C++

●​ Task 5: Get familiar with pgRouting

14. Detailed Proposal

Proposed Documentation: Brandes’ Betweenness Centrality

Proposed Description
This algorithm calculates the betweenness centrality value for each vertex in the graph
by running the shortest path algorithm between all pairs of vertices.

8

https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas:-2021#pgrouting-application-requirements
https://github.com/pgRouting/pgrouting/wiki/GSoC-Ideas:-2021#pgrouting-application-requirements
https://github.com/pgRouting/GSoC-pgRouting/issues/145
https://github.com/sauravUppoor/GSoC-pgRouting/issues/1
https://github.com/pgRouting/GSoC-pgRouting/pull/146
https://github.com/sauravUppoor/GSoC-pgRouting/issues/2
https://github.com/sauravUppoor/GSoC-pgRouting/issues/3
https://github.com/sauravUppoor/GSoC-pgRouting/issues/4

The main characteristics are:

●​ The algorithm works for directed and undirected graphs.
●​ Values are returned when the graph contains at least a single vertex.
●​ The algorithm returns float values denoting betweenness centrality for each

vertice.
●​ Returned values are ordered in ascending order of vertex indices.
●​ Running time:

○​ Unweighted graph:
○​ Weighted graph:

Proposed Signature
pgr_brandesBetweennessCentrality(Edges SQL, [, directed])
RETURNS SET OF (vertex_id, centrality)
OR EMPTY SET

Parameters:

Parameter Type Default Description

Edges SQL TEXT An SQL query.

directed BOOLEAN true ●​ When true graph is considered
Directed.

●​ When false graph is considered
Undirected.

Inner Query:

Edges SQL: an SQL query, which returns a set of rows with the following columns:

Column Type Default Description

id ANY-INTEGER Identifier of the edge.

source ANY-INTEGER Identifier of first endpoint vertex of the
edge.

target ANY-INTEGER Identifier of second endpoint vertex of
the edge.

cost ANY-NUMERICAL Weight of the edge (source, target).

9

https://www.codecogs.com/eqnedit.php?latex=O(V*E)#0
https://www.codecogs.com/eqnedit.php?latex=O(V*E%20%2B%20V*(V%2BE)logV)#0

reverse_cost ANY-NUMERICAL -1 Weight of the edge (target, source).

Where:
ANY-INTEGER : ​ SMALLINT, INTEGER, BIGINT
ANY-NUMERICAL : ​ SMALLINT, INTEGER, BIGINT, REAL, FLOAT

Result Columns:

Returns SET of (vertex_id, centrality)

Column Type Description

vertex_id BIGINT Identifier of the vertex.

centrality FLOAT Centrality value of the vertex.
●​ Minimum value of centrality is 0.

Proposed Query

SELECT * FROM pgr_brandesBetweennessCentrality (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM my_edge
ORDER BY id,
​ TRUE
);

Sample Output
 vertex_id | centrality
-----------+------------
 1 | 0
 2 | 8
 3 | 0
 4 | 0
 5 | 28
 6 | 13.3333
 7 | 0
 8 | 8
 9 | 3.6667
 10 | 14.1667

10

 11 | 5.3333
 12 | 0
 13 | 0
 14 | 0
 15 | 7
 16 | 0
 17 | 0
(17 rows)

Theory
Centrality metrics measures the importance of each node with varying definitions of
importance. Out of all the centrality metrics - closeness, graph, betweenness and
stress, betweenness centrality is the most popular since it can be modified to find other
centrality metrics. Betweenness centrality is a measure of the central positioning of a
node in the graph. It is a measure of the extent to which a node plays a bridging role in
the graph.

The betweenness centrality of a node is defined in terms of the shortest paths that
pass through . Formally:

1.​ Assume a directed/undirected, weighted/unweighted graph .

2.​ Define as the count of shortest paths from to .

3.​ Define as the count of shortest paths from node to passing
through node .

4.​ be the betweenness centrality of node .

One way to compute efficiently is to use an algorithm proposed by Brandes,
which gives the following result

where is referred to as pair-wise dependency in Brandes’
algorithm[1] and .

We can normalise the above betweenness centrality values by scaling it down by

 where . This normalised value is also referred to as relative

betweenness centrality denoted by . This value isn’t a part of our query results

11

https://www.codecogs.com/eqnedit.php?latex=v#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=v#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=G%20%3D%20%3C%20V%2CE%20%3E#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csigma(s%2Ct)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csigma(s%2Ct%7Cv)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=v#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=C_b(v)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=v#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=C_b(v)#0
https://www.codecogs.com/eqnedit.php?latex=C_b(v)%20%3D%20%20%5Csum_%7Bs%2Ct%20%5Cin%20V%7D%5E%7B%7D%20%5Cdelta%20(s%2Ct%20%7C%20v)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta%20(s%2Ct%7Cv)%20%3D%20%5Cfrac%7B%5Csigma%20(s%2Ct%7Cv)%7D%7B%5Csigma%20(s%2Ct)%7D#0
https://www.codecogs.com/eqnedit.php?latex=s%2Ct%20%5Cneq%20v#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B2%7D%7Bn%5E2-3n%2B2%7D#0
https://www.codecogs.com/eqnedit.php?latex=n%20%3D%20%7CV%7C#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(v)#0

since Boost C++ Library has a different function to compute it and manually computing it
might reduce the precision.

For finding the shortest paths, it is optimal to use BFS and Dijkstra/Bellman-Ford
algorithm for unweighted and weighted graphs respectively. Since the shortest path
computation needs to be done for all pairs of vertices in the graph, Brandes’ algorithm is
efficient for Sparse graphs. A graph is said to be sparse if the following holds true[3]

where symbols have their usual meaning. However, it is not a necessary condition for
Brandes’ algorithm. For undirected graphs, each shortest path is chosen twice, hence
the value of is scaled down by 2. The running time of this algorithm is
for an unweighted graph and for a weighted graph.

Approach
1.​ For every node , set .
2.​ For each node :

a.​ Use BFS or Dijkstra, to find all shortest paths from to all other nodes.
Store all the paths for each target .

b.​ For each , for each vertex that occur in the stored path, count the

number of times it occurs in total to give and divide with the total

number of paths from to (i.e.,). Add the result to .

3.​ gives the final result.

This is a naive approach to the algorithm. There are a couple of optimisations with
storage possible.[1]

Code

●​ Boost Graph Library - Brandes’ Betweenness Centrality:
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/betweenness_centrality.htm
l

●​ Examples used in the sample testing below have been implemented here:
https://github.com/sauravUppoor/SampleCode

●​ Animations for the examples can be found here:
https://github.com/sauravUppoor/SampleCode#visualisation

12

https://www.codecogs.com/eqnedit.php?latex=%200%20%5Cleq%20%5Cfrac%7BE%7D%7B%20(%5Cfrac%7BV*(V-1)%7D%7B2%7D)%20%7D%20%5Cleq%200.5%20#0
https://www.codecogs.com/eqnedit.php?latex=C_b(v)#0
https://www.codecogs.com/eqnedit.php?latex=O(V*E)#0
https://www.codecogs.com/eqnedit.php?latex=O(V*E%20%2B%20V*(V%2BE)*logV)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=v%20%5Cin%20V#0
https://www.codecogs.com/eqnedit.php?latex=C_b(v)%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=s%20%5Cin%20V#0
https://www.codecogs.com/eqnedit.php?latex=s#0
https://www.codecogs.com/eqnedit.php?latex=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=v#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csigma(s%2Ct%7Cv)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csigma(s%2Ct)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=C_b(v)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=C_b(v)#0
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/betweenness_centrality.html
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/betweenness_centrality.html
https://github.com/sauravUppoor/SampleCode.git
https://github.com/sauravUppoor/SampleCode#visualisation

Sample Testing

Example 1
The graph for testing is from the pgRouting sample data: Network for queries marked as
directed and only cost column is used. Fig. 1 shows the graph from sample data.

Fig. 1 pgRouting sample data directed graph

CREATE

CREATE TABLE my_edge (

id BIGINT,
source BIGINT,
target BIGINT,
cost BIGINT,
reverse_cost BIGINT

);

13

https://docs.pgrouting.org/latest/en/sampledata.html#network-for-queries-marked-as-directed-and-only-cost-column-is-used
https://docs.pgrouting.org/latest/en/sampledata.html#network-for-queries-marked-as-directed-and-only-cost-column-is-used

INSERT

INSERT INTO my_edge (id, source, target, cost, reverse_cost)
VALUES
(1, 1, 2, 1, -1),
(2, 2, 5, 1, -1),
(3, 3, 6, 1, -1),
(4, 4, 9, 1, -1),
(5, 7, 8, 1, -1),
(6, 8, 5, 1, -1),
(7, 5, 6, 1, -1),
(8, 6, 9, 1, -1),
(9, 5, 10, 1, -1),
(10, 6, 11, 1, -1),
(11, 9, 12, 1, -1),
(12, 10, 11, 1, -1),
(13, 11, 12, 1, -1),
(14, 16, 17, 1, -1),
(15, 10, 15, 1, -1),
(16, 14, 15, 1, -1),
(17, 15, 13, 1, -1);

SELECT
SELECT * FROM my_edge;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 1 | 2 | 1 | -1
 2 | 2 | 5 | 1 | -1
 3 | 3 | 6 | 1 | -1
 4 | 4 | 9 | 1 | -1
 5 | 7 | 8 | 1 | -1
 6 | 8 | 5 | 1 | -1
 7 | 5 | 6 | 1 | -1
 8 | 6 | 9 | 1 | -1
 9 | 5 | 10 | 1 | -1
 10 | 6 | 11 | 1 | -1

14

 11 | 9 | 12 | 1 | -1
 12 | 10 | 11 | 1 | -1
 13 | 11 | 12 | 1 | -1
 14 | 16 | 17 | 1 | -1
 15 | 10 | 15 | 1 | -1
 16 | 14 | 15 | 1 | -1
 17 | 15 | 13 | 1 | -1
(17 rows)

Query
SELECT * FROM pgr_brandesBetweennessCentrality (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM my_edge
ORDER BY id,
​ TRUE
);

Output
 vertex_id | centrality
-----------+------------
 1 | 0
 2 | 8
 3 | 0
 4 | 0
 5 | 28
 6 | 13.3333
 7 | 0
 8 | 8
 9 | 3.6667
 10 | 14.1667
 11 | 5.3333
 12 | 0
 13 | 0
 14 | 0
 15 | 7
 16 | 0

15

 17 | 0
(17 rows)

Visualization
Animated version of the diagrams can be found here.

Fig. 2 BC values for a sample graph

16

https://github.com/sauravUppoor/SampleCode#visualisation

Fig. 2 shows the sample graph with the betweenness centralities values. Node
(marked with blue square) has the highest value since, observably, it is more
centrally placed. Let's look at how the was computed.

 Shortest paths from to

7 12 7 → 8 → 5 → 10 → 11 → 12
7 → 8 → 5 → 6 → 11 → 12
7 → 8 → 5 → 6 → 9 → 12

⅔ = 0.6667

8 12 8 → 5 → 10 → 11 → 12
8 → 5 → 6 → 11 → 12
8 → 5 → 6 → 9 → 12

⅔ = 0.6667

5 12 5 → 10 → 11 → 12
5 → 6 → 11 → 12
5 → 6 → 9 → 12

⅔ = 0.6667

2 12 2 → 5 → 10 → 11 → 12
2 → 5 → 6 → 11 → 12
2 → 5 → 6 → 9 → 12

⅔ = 0.6667

1 12 1 → 2 → 5 → 10 → 11 → 12
1 → 2 → 5 → 6 → 11 → 12
1 → 2 → 5 → 6 → 9 → 12

⅔ = 0.6667

6 12 6 → 11 → 12
6 → 9 → 12

½ = 0.5

3 12 3 → 6 → 11 → 12
3 → 6 → 9 → 12

½ = 0.5

10 12 10 → 11 → 12 1

5.333

For the rest of the combinations of , the value of is 0 since node will
not be a part of their shortest paths. Hence, it is not shown in the above table. Likewise,
we can compute betweenness centrality using brandes’ algorithm for the rest of the
nodes.

Example 2
Note: Since Boost Graph Library didn’t have any example for this algorithm, the
following example has been created by me and implemented here.

17

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=11#0
https://www.codecogs.com/eqnedit.php?latex=C_b#0
https://www.codecogs.com/eqnedit.php?latex=C_b(11)#0
https://www.codecogs.com/eqnedit.php?latex=s#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=s#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta(s%2Ct%7C11)#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7B%7D%7B%7D#0
https://www.codecogs.com/eqnedit.php?latex=(s%2Ct)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cdelta(s%2Ct%7C11)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=11#0
https://github.com/sauravUppoor/SampleCode

Fig. 3.1 Undirected, weighted graph

CREATE

CREATE TABLE my_edge (

id BIGINT,
source BIGINT,
target BIGINT,
cost BIGINT,
reverse_cost BIGINT

);

INSERT

INSERT INTO my_edge (id, source, target, cost, reverse_cost)
VALUES
(1, 1, 2, 2, 2),
(2, 1, 4, 3, 3),
(3, 1, 5, 3, 3),
(4, 2, 3, 2, 2),
(5, 2, 4, 4, 4),
(6, 3, 4, 1, 1),
(7, 4, 5, 2, 2);

18

SELECT

SELECT * FROM my_edge;
 id | source | target | cost | reverse_cost
----+--------+--------+------+--------------
 1 | 1 | 2 | 2 | 2
 2 | 1 | 4 | 3 | 3
 3 | 1 | 5 | 3 | 3
 4 | 2 | 3 | 2 | 2
 5 | 2 | 4 | 4 | 4
 6 | 3 | 4 | 1 | 1
 7 | 4 | 5 | 2 | 2
(7 rows)

Query

SELECT * FROM pgr_brandesBetweennessCentrality (​
​ ‘SELECT id, source, target, cost, reverse_cost FROM my_edge
ORDER BY id,
​ FALSE
);

Output

 vertex_id | centrality
-----------+------------
 1 | 0.5
 2 | 0.5
 3 | 1.5
 4 | 2
 5 | 0
(5 rows)

19

Explanation
Animated version of the below visualisation can be found here.

Fig. 3.2 BC values of each node

Fig. 3.2 shows betweenness centrality values of each node of the graph in fig. 3.1. The
computation for node 3 (central node in fig 3.1) is shown below:

 Shortest paths from to

1 4 1 → 2 → 3 → 4
1 → 0 → 4

½ = 0.5

2 0 2 → 3 → 0
2 → 1 → 0

½ = 0.5

2 4 2 → 3 → 4 1

2

20

https://github.com/sauravUppoor/SampleCode#visualisation
https://www.codecogs.com/eqnedit.php?latex=s#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=s#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=t#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cdelta(s%2Ct%7C3)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csum_%7B%7D%7B%7D#0

For rest of the combinations of node isn’t included in their shortest paths, hence
not displayed in the above table. Hence, = 2. Likewise, we can find the centrality
values for all the nodes.

Proposed Directory Structure and Files

Directory Files

pgrouting/doc/betweennessCentrality/

CMakeLists.txt, pgr_betweennessCentrality.rst

pgrouting/docqueries/betweennessCentr
ality/

CMakeLists.txt,
doc-betweennessCentrality.result,
doc-betweennessCentrality.test.sql, test.conf

pgrouting/include/betweennessCentrality/

pgr_betweennessCentrality.hpp

pgrouting/include/drivers/betweennessCe
ntrality/

pgr_betweennessCentrality.h

pgrouting/pgtap/betweennessCentrality/

innerQuery.sql, no_crash_test.sql,
types_check.sql, edge_cases.sql

pgrouting/sql/betweennessCentrality

CMakeLists.txt, _betweennessCentrality.sql,
betweennessCentrality.sql

pgrouting/src/betweennessCentrality

CMakeLists.txt, betweennessCentrality.c,
betweennessCentrality_driver.cpp

Applications

The algorithm finds its applications in a variety of real scenarios. Below are a few:

●​ Urban space analysis and resource allocation
For urban space analysis by GIS, streets segments and intersections are

considered. PostGIS also uses a similar approach for mapping spatially embedded
networks like streets, nodes, settlements etc. Space Syntax is a methodology for urban
analysis. It has shown growing evidence about the correlation between the centrality

21

https://www.codecogs.com/eqnedit.php?latex=(s%2Ct)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=3#0
https://www.codecogs.com/eqnedit.php?latex=C_b(3)#0

and the urban phenomenons like vehicular and pedestrian flow, retail commerce vitality
and even crime rates[3].

Higher the value of betweenness centrality for a node/edge means higher the
amount of traffic (like vehicular, cyclists, public etc) passing through that particular node.
This can be used for better resource allocations such as maintenance, infrastructure
upgrade. This can also be used in other situations like classifying areas as low vehicle
density zones and can improve the time prediction for navigation systems.

●​ Compute Central Point Dominance:
​ Another metric for finding the centrality of a graph, in a general sense, is the
central point dominance. Using relative betweenness centrality, we can compute the
central point dominance. It is an overall “betweenness” value for a graph. Let’s denote

central point dominance as . Formally we can define central point dominance as

where denotes a node with highest betweenness centrality value[4].
Its values lie between 0 and 1. Fig. 4.1 shows a complete graph () and fig. 4.2

shows a Wheel graph. Consider a graph as a complete graph and as a wheel

graph then we have and .

​ ​
Fig. 4.1 graph​ ​ ​ ​ Fig. 4.2 Wheel graph

●​ Identify critical nodes in a network:
Sometimes, a node/edge could go down due to construction/roadblock/accidents

etc. If a node goes down, we can compute the effects (traffic flow) due to diversions on

22

https://www.codecogs.com/eqnedit.php?latex=C_b'(G)#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(G)%20%3D%20%5Cfrac%7B%5Csum_%7Bv%20%5Cin%20V%7D%5E%7B%7D%20C_b(v*)%20-%20C_b'(v)%7D%7Bn-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=v*#0
https://www.codecogs.com/eqnedit.php?latex=K_4#0
https://www.codecogs.com/eqnedit.php?latex=G_1#0
https://www.codecogs.com/eqnedit.php?latex=G_2#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(G_1)%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(G_2)%20%3D%201#0
https://www.codecogs.com/eqnedit.php?latex=K_4#0

the whole graph. This can assist in finding the critical nodes and avoid bottlenecks and
help in congestion control. It is not encouraged to have nodes in networks which have
comparatively very high centrality values since the chances of the disruption of the
whole network increases. Hence, emphasis should be more on distributing the centrality
values throughout the network.

●​ Compute Closeness, Stress and Graph Centralities using Betweenness
Centrality algorithm:
Each of these centralities denotes significance of an edge or a node in a graph.

Betweenness centrality helps us compute these other centralities using minimal
changes. Here denotes the shortest path from node to .

a.​ Closeness centrality is a measure of how close a node is to the rest of the
nodes. It is defined as

b.​ Graph centrality is the distance of a node to its most remote counterpart. It
is given by

c.​ Stress centrality is the absolute count of shortest paths passing from a
node.

●​ Social network analysis:
Centrality is a fundamental concept in network analysis. Bavelas was the first to

realize that central individuals in a social network very often play a prominent role in the
group, or in other words a good location in the network structure corresponds to power
in terms of independence, influence and control on the others. He applied the idea of
centrality to human communication and their social circles; he was interested in the
characterization of the communication in small groups of people and assumed a relation
between structural centrality and influence and/or power in group processes[3].

In social networks, network theory and telecommunication, a node with higher
betweenness centrality means more control over the graph since more information
passes through that node. Such a node can then decide whether to pass the
information or not, thus has a higher stature.

23

https://www.codecogs.com/eqnedit.php?latex=d_t(v)#0
https://www.codecogs.com/eqnedit.php?latex=v#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=C_c(v)%20%3D%20%7B%5B%5Csum_%7Bt%20%5Cin%20V%7D%5E%7B%7D%20d_t(v)%5D%7D%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=C_g(v)%20%3D%20%7B%5B%5Cmax_%7Bt%20%5Cin%20V%7D%20(d_t(v))%5D%7D%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=C_s(v)%20%3D%20%5Csum_%7Bs%2Ct%20%5Cin%20V%7D%5E%7B%7D%20%5Csigma%20(s%2Ct%20%7C%20v)#0

15. Future Scope

There are many graph metrics and sparse matrix algorithms that are still not
implemented in pgRouting. The following algorithms could be implemented in future as
an extension to this project/pgRouting:

●​ Relative Betweenness Centrality:
As mentioned in the theory section, relative betweenness centrality is a scaled

down version of absolute betweenness centrality. It is defined as follows:

​ Calculating the value of manually using the Boost’s
brandes_betweenness_centrality() might result is deterioration of precision of
floating values, hence I think instead of having parameters in the current proposed
function, it is better to have a separate function in pgRouting collection and use the
inbuilt relative_betweenness_centrality() function provided by the Boost

Library for calculative .

●​ Betweenness Centrality Clustering:
​ This algorithm implements clustering in a graph based on the values of edge
betweenness centrality. It is an iterative algorithm that removes an edge with the highest
value of edge betweenness centrality. As a result, the graph gets divided into various
connected components called clusters. Boost Graph Library has an inbuilt function,
betweenness_centrality_clustering(), for this algorithm. Complete Boost
documentation can be viewed here.

●​ Bandwidth and ith bandwidth:
BGL has an inbuilt function to calculate Bandwidth and ith bandwidth of a given

graph. For a graph, lets assign each node in the graph with a unique with the
value in the range . Bandwidth of a graph is formally defined as:

Similarly, ith bandwidth of a graph is bandwidth for a node . It is given by:

24

https://www.codecogs.com/eqnedit.php?latex=C_b'(v)%20%3D%20%5Cfrac%7B2*C_b(v)%7D%7B(V-1)*(V-2)%7D#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(v)#0
https://www.codecogs.com/eqnedit.php?latex=C_b'(v)#0
https://www.boost.org/doc/libs/1_56_0/libs/graph/doc/bc_clustering.html
https://www.codecogs.com/eqnedit.php?latex=index#0
https://www.codecogs.com/eqnedit.php?latex=%5B0%2C%7CV%7C)#0
https://www.codecogs.com/eqnedit.php?latex=B(G)%20%3D%20%5Cmax_%7B(u%2Cv)%20%5Cin%20E%7D%20%7Cindex%5Bu%5D%20-%20index%5Bv%5D%7C#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=B_i(G)%20%3D%20%5Cmax_%7B(i%2Cj)%20%5Cin%20E%7D%20%7Cindex%5Bi%5D%20-%20index%5Bj%5D%7C#0

Complete documentation of Boost Graph Library for the above function can be found
here.

​ These algorithms and properties mentioned above are some of the most widely
used graph metrics algorithms from the Boost Graph Library and I think having them in
the pgRouting library will greatly benefit the users.

16. References

[1] Dr Simone Teufel and Prof Ann Copestake, Brandes’ Betweenness Centrality
algorithm, Implementation and Optimisations, University of Cambridge.

[2] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, John C. Hart, Edge v. Node
Parallelism for Graph Centrality Metrics, University of Illinois Urbana-Champaign.

[3] Aisan Kazerani and Stephan Winter, Can Betweenness Centrality Explain Traffic
Flow?, Department of Geomatics, The University of Melbourne.

[4] Linton C. Freeman, A Set of Measures of Centrality Based on Betweenness,
University of California, Irvine.

[5] Baeldung, Sparse vs Dense Graphs.

[6] Brandes' Betweenness Centrality, Boost C++ official documentation.

[7] Wikipedia, Betweenness Centrality.

[8] Boris Schaling: Boost.Graph for Beginners, Boost Graph Library lecture.

[9] Boost Library Concepts, BGL function return types, Boost C++ documentation.

[10] Exploring Boost Graph Library, IBM Boost C++ graph documentation.

[11] Sample Data, pgRouting Sample Graph Data for pgTap testing.

[12] Algorithms Index, pgRouting Manual (3.2-dev).

17. Resume

25

https://www.boost.org/doc/libs/1_56_0/libs/graph/doc/bandwidth.html
https://www.cl.cam.ac.uk/teaching/1617/MLRD/handbook/brandes.pdf
https://www.sciencedirect.com/topics/computer-science/betweenness-centrality
https://people.eng.unimelb.edu.au/winter/pubs/kazerani09centrality.pdf
https://www.researchgate.net/publication/216637282_A_Set_of_Measures_of_Centrality_Based_on_Betweenness
https://www.baeldung.com/cs/graphs-sparse-vs-dense#the-density-of-a-graph
https://www.boost.org/doc/libs/1_75_0/libs/graph/doc/betweenness_centrality.html
https://en.wikipedia.org/wiki/Betweenness_centrality
https://www.youtube.com/watch?v=uYvBH7TZlFk
https://www.boost.org/doc/libs/1_57_0/libs/graph/doc/graph_concepts.html
https://www.ibm.com/developerworks/aix/library/au-aix-boost-graph/index.html
https://docs.pgrouting.org/latest/en/sampledata.html
https://docs.pgrouting.org/dev/en/genindex.html

	Google Summer of Code 2021 Proposal
	
	b.​Have you applied but were not selected? When?​​​8

	1. Contact Details
	2. Title
	3. Brief Project Description
	4. State of the Project Before GSoC
	5. Benefits to Community
	6. Deliverables
	7. Timeline
	Community Bonding Period (May 17, 2021 - June 7, 2021)
	Official Coding Period

	8. Do you understand this is a serious commitment, equivalent to a full-time paid summer internship or summer job?
	9. Do you have any known time conflicts during the official coding period?
	10. Studies
	What is your school and degree?
	Would your application contribute to your ongoing studies/degree? If so, how?

	11. Programming and GIS
	Computing Experience
	GIS experience as a user
	GIS programming and other software programming
	Briefly mention and link to former open-source contributions

	12. GSoC Participation
	Have you participated in GSoC before?
	Have you applied but were not selected? When?
	Have you submitted/will you submit another proposal for this year's GSoC to a
	different org? Which one?

	13. pgRouting Application Requirements
	14. Detailed Proposal
	Proposed Documentation: Brandes’ Betweenness Centrality
	Proposed Description
	Proposed Signature
	Proposed Query
	Sample Output
	Theory
	Approach
	Code
	Sample Testing
	Example 1
	Example 2

	Proposed Directory Structure and Files
	Applications

	15. Future Scope
	16. References
	17. Resume

