
Unstructured Data Support in Polaris 
Author:  Yufei Gu
Create Date:  Dec 5, 2024
Update Date:  Jan 14, 2025

Background 
The rapid growth of AI/ML and data-intensive applications has significantly increased the need 
for managing unstructured data files, like images, logs, and videos. A scalable and efficient 
solution for querying and managing unstructured data metadata is now essential. 

Polaris plays a critical role in managing and querying large-scale data across different 
processing engines. Adding unstructured data support will enable Polaris to handle diverse data 
types efficiently, ensuring high performance and reliability. 

A table-like entity like volumes can be used for organizing and managing unstructured 
data. Volumes provide a way to group related data files logically, similar to directories or 
containers. This structure offers key advantages: 

1.​ Better Organization: Grouping files logically simplifies metadata management. 
2.​ Access Control: Volumes help enforce isolation and enable policies for better security 

and governance. Polaris can ensure the correct credential vending based on the 
privilege. 

3.​ Scalability: They provide a flexible framework for advanced use cases like federated 
queries and staging. 

Goals 
●​ Define a new table-like entity named volume in Polaris to support unstructured data. 
●​ Users should be able to add/delete/update files in a volume without any additional API 

calls. For example, using aws s3 cli to add files. 
●​ Volume access control and credential vending. 
●​ Volume metadata query (file size, timestamp, original url, public url, md5, etc) 
●​ Define APIs to create/drop/query volumes. 

Non-Goals 
●​ Transactional features, like versioning/snapshotting/branching, and transitional tracking. 

Transactional tracking is possible, but users won’t be able to leverage the existing tool to 
add, update and remove files. So it is out of scope. We could have another proposal if 
the transactional use case is needed. 

mailto:flyrain000@gmail.com


None

●​ Sharding/Partition: all files under a volume are organized freely without any structure. 
●​ Volume/Directory table Sync Between Polaris and Other Catalogs: Iceberg tables in 

Polaris can be synchronized to other catalogs like Snowflake Horizon, AWS Glue. Do we 
need the same functionality for directory tables? Probably not. Syncing directory tables 
between different catalogs doesn’t offer significant benefits. Each catalog can create a 
directory table that points to the same underlying storage location. Since there are no 
strict consistency guarantees on these tables, ensuring synchronization across catalogs 
may introduce unnecessary complexity. 

Design 
A volume belongs to a namespace under a Polaris catalog. The volume’s storage type will be 
decided by the storage type of the owner catalog, specifically, the following 4 types will be 
supported: 

1.​ AWS s3 
2.​ Azure object store 
3.​ GCS 
4.​ Local file system, mainly for testing purposes. 

 
Here is a command to create a new catalog in Polaris, once a catalog is created, its storage 
type, role and location are fixed. 

polaris catalogs create \ 
  --storage-type s3 \ 
  --default-base-location s3://example-bucket/my_data \ 
  --role-arn ${ROLE_ARN} \ 
  my_catalog 

 
Volume Properties 

1.​ Location 
2.​ File format, optional 

Directory Table 
The metadata of a volume will be backed by a read-only Iceberg table in Polaris, which is called 
directory table. The directory table is optional for a volume. It’s enabled by default, but users can 
choose to use a volume without a directory table. 

1.​ Clients/Engines can query it as an Iceberg table. 
2.​ Table refresh is taken care of by Polaris from the user perspective. Please note, it still 

needs an engine to write the directory table. The engine itself doesn't belong to Polaris. 



3.​ Table refresh happens asynchronously, and it will be triggered automatically by Polaris. 
The refresh interval is potentially configurable. 

4.​ The directory table is automatically created once a volume is created. We could put it a 
special place under the catalog location, for example, 
s3://example-bucket/my_catalog_location/_direcotry_tables/t1 

 
Here is the architecture diagram to show it works.  

 

Table schema 
CREATE TABLE dir_table ( relative_path STRING, size BIGINT, 
last_modified TIMESTAMP, md5 STRING, file_url STRING )  

Two options to refresh the directory tables by an engine 
Option 1: Design a delegation service interface in Polaris to invoke a workload in a remote 
engine. 
Option 2: The same model as TMS jobs like compaction and snapshot expiration. Polaris 
defines the refresh policy for a volume. TMS takes care of the fresh schedule.  

REST Endpoints 



Since the Iceberg REST specification does not currently cover directory-based file 
management, and  it’s unlikely that the Iceberg REST specification will cover this use case in 
the future, we need to introduce new APIs for this specific use case. These APIs will extend 
Polaris to handle directory-based tables natively, supporting the CRUD operations listed above. 

The following are examples of the REST endpoints that will be introduced to enable this 
functionality: 

●​ Create a new volume 

POST /v1/{prefix}/namespaces/{namespace}/volume/ 

●​ Drops a volume, purge options to indicate if the files should be deleted 

Delete /v1/{prefix}/namespaces/{namespace}/volume/{volume} 

●​ Retrieves a list of files under the directory with certain filtering, like regex.  

​ GET/POST /v1/{prefix}/namespaces/{namespace}/volume/{volume} 

Open questions 
1.​ Do we allow users to list volumes under a namespace using the same API? 

a.​ The directory table of a volume is an Iceberg table. This makes it possible to 
unify both. 

b.​ The table list will be mixed with normal Iceberg tables and directory tables. 
 

https://github.com/apache/iceberg/blob/5439cbdb278232779fdd9a392bbf57f007f9bda0/open-api/rest-catalog-open-api.yaml#L497-L497

	Unstructured Data Support in Polaris 
	Background 
	Goals 
	Non-Goals 
	Design 
	Directory Table 
	Table schema 
	Two options to refresh the directory tables by an engine 
	REST Endpoints 


	Open questions 

