

Версия 14.02.24

(подробную информацию об обновлениях см.после оглавления)

Региональные соревнования по подводной робототехнике во Владивостоке 2024

Категория Navigator (5-8 класс)

Оглавление

Общая информация	2
Постер	2
Требования к ТНПА	2
Выполнение подводных заданий	3
Легенда	3
Станция	3
Время выполнения миссии	3
Описание миссии	4
ЗАДАЧА 1: Инициатива океанических обсерваторий: Прибрежный Ріо перемещение комплекса наблюдения за океаном, с целью исследова данных	•
ЗАДАЧА 2: SMART кабель для наблюдения за океаном	8
ЗАДАЧА 3: Изучение экосистем и сохранение видов	13
Штрафные баллы:	22
Общение с судьями и решение спорных вопросов	23
Расстановка макетов	24
Лист оценки	24

История версий

21. 03.24 добавлено фото системы распыления

Общая информация

Данный документ является основным регламентом категории Navigator Всероссийских соревнований по подводной робототехнике 2024. Как региональные организаторы Всероссийских соревнований мы имеем право адаптировать правила состязаний в нашем регионе под наших участников. Именно на основании этого документа, а не Всероссийского регламента Navigator, будут проходить соревнования. Для участия в категории Navigator участники должны зарегистрироваться по ссылке.

Дата соревнований: 20 апреля 2024

Место проведения: МГУ им. адм. Г.И. Невельского (ул. Верхнепортовая 66в, г. Владивосток)

Количество участников в команде: 2-4 человека

Соревнования состоят из двух частей:

- Постер 30 баллов
- Выполнение подводных заданий в бассейне 175 баллов

Итого: 205 баллов.

Постер

В рамках региональных соревнований вам необходимо прислать постер в формате pdf. Ваша цель - разработать постер, в котором техническая информация о вашем ТНПА будет представлена в привлекательной и удобной форме для широкой аудитории. Участникам необходимо не только представить информацию о своем ТНПА и команде, но и с помощью дизайна и понятной графики убедить зрителей в ценности вашего продукта и команды (прорекламировать его). Во время соревнований ваш стенд будет оцениваться судьями-представителями различных профессий (наука, робототехника, маркетинг и т.д.). Максимальный размер постера - 180х80 см (Высота * ширина).

Критерии оценки находятся в отдельном файле на странице соревнований. Постер необходимо загрузить в <u>гугл-форму</u> до 18 апреля включительно. (по Владивостоку).

Постер будет оцениваться 2-3 судьями онлайн и их оценки будут усреднены. За постер команда может заработать максимум 30 баллов.

Примечание. В рамках региональных соревнований постер необходимо представить только в формате pdf. Оценка работ будет проходить без постерной сессии (заочно).

Требования к ТНПА

- Габариты ТНПА должны позволять ему размещаться в куб 50x50x50 см.
- К массе аппарата нет требований.

- На аппарате не должно быть батарей или аккумуляторов. Напряжение питания робота не должно превышать 15В. Максимальный ток не должен превышать 15А.
- На аппарате не должны быть установлены детали (острые, колющие предметы, оголенные провода и т.п.), которые могут нанести вред бассейну или членам команды.

Выполнение подводных заданий

Легенда

Как и в прошлом году три задачи соревновательной миссии в 2024 году посвящены решению задач актуальных в рамках Десятилетия наук об океане в интересах устойчивого развития (2021 -2030). Вам предстоит выполнить работы по увеличению Глобальной системы наблюдения за океаном до защиты и восстановления экосистем и биоразнообразия и сбора данных в океане для решения проблем климатических изменений.

В рамках миссии этого года вам предстоит провести работу по диагностике системы сбора данных в океане, выполнить работы по размещению подводного кабеля, провести восстановительные работы на коралловом рифе, выполнив пересадку новых кораллов и вылечив больные кораллы с помощью пробиотиков.

Все задания соревнований составлены на основе существующих исследовательских проектов и задач, в которых используются подводные роботы или разработки в области подводной робототехники.

Станция

Станция представляет собой стол и 2-3 стула, расположенных приблизительно в 1 метре от бассейна. Бассейн имеет глубину приблизительно 1,8 м. Источник питания, мониторы и другое оборудование, необходимое для эксплуатации робота, команда должна принести на станцию с собой.

Время выполнения миссии

Каждой команде будет дано 2 попытки для выполнения миссии (совокупность подводных заданий) длительностью 20 минут каждая.

Каждая попытка состоит из трех частей:

- развертывание оборудования на станции, подготовка к выполнению миссии 3 минуты
 - выполнение миссии 15 минут
 - "свертывание" оборудования, освобождение станции 2 минуты

В любой момент во время выполнения миссии вы можете извлекать свой аппарат на поверхность для регулировки плавучести, изменения полезной нагрузки или

устранения неполадок. Время выполнения миссии при этом НЕ останавливается, а продолжает идти.

Судья может остановить время и завершить попытку досрочно, если видит, что проблема с аппаратом не может быть решена усилиями команды или с помощью водолаза.

Завершение попытки. Попытка завершается, если закончилось время выполнения миссии (15 минут). Судья останавливает время, фиксирует максимальное, и фиксирует количество набранных баллов.

Досрочное завершение попытки возможно в том случае, если аппарат после выполнения задач миссии своим ходом (с помощью телеуправления) вернулся на поверхность к бортику бассейна в зоне старта. Судья останавливает время после того, как аппарат всплывет и участник команды коснется рукой аппарата.

Описание миссии

Команды могут выполнять задачи в произвольном порядке. Однако шаги некоторых задач требуют последовательного выполнения (это будет указано в описании задачи).

Миссия состоит из трех задач:

- Задача 1. Инициатива океанических обсерваторий: Прибрежный Pioneer Array **50 баллов.**
- Задача 2. SMART кабель для наблюдения за океаном 45 баллов
- Задача 3. От Японского моря до Байкала: Изучение экосистем и сохранение видов **80 баллов**
 - 3.1. Умные рифы
 - 3.2. Внутренние озера и водные пути

ИТОГО: 175 баллов.

Примечание: итоговый лист оценки миссии приведен в конце документа и может быть изменен организаторами не менее чем за день до начала соревнований.

ЗАДАЧА 1: Инициатива океанических обсерваторий: Прибрежный Pioneer Array – перемещение комплекса наблюдения за океаном, с целью исследований и сбора данных

Инициатива океанических обсерваторий (Ocean Observatories Initiative, OOI) - это передовая система интегрированных научных платформ и датчиков, которые измеряют физические, химические, геологические и биологические свойства и процессы от морского дна до поверхности моря в ключевых прибрежных и открытых океанических районах Атлантики и Тихого океана. Объект был разработан для

решения критических вопросов о системе Земля-Океан, включая изменение климата, изменчивость экосистемы, подкисление океана, сейсмичность на уровне шкалы и подводные вулканы, а также использование углеродного велосипеда с целью лучшего понимания океана и нашей планеты. Все данные ООІ доступны онлайн.

Одна обсерватория OOI, Coastal Pioneer Array, была спроектирована так, чтобы ее можно было перемещать, и чтобы она подходила для размещения в области умеренных и сильных ветров, волн и течений на континентальном шельфе и верхнем склоне. Прибрежный комплекс Pioneer Array был установлен в 2016 году у побережья Новой Англии. Его массив состоит из заякоренных платформ, таких как надводные буи, причалы для профилографов и донные многофункциональные узлы, а также автономных необитаемых подводных аппаратов (АНПА).

1.1 Извлечение мультифункционального узла комплекса (шаги данной задачи выполняются строго по порядку)

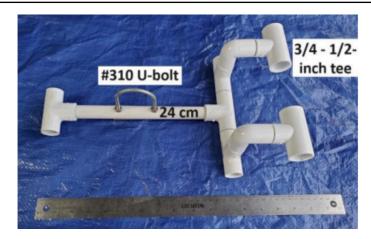
- Освободить буй мультифункционального узла. **10 баллов.** Шаг считается выполненным, если коннектор полностью извлечен из рамы и не контактирует с корпусом. Коннектор не считается мусором и может быть оставлен на дне.
- Визуально определить неудачное освобождение буя **5 баллов.** Шаг считается выполненным, если команда продемонстрировала судье на экране, что буй не контактирует с корпусом и всплыл, но не достиг поверхности из-за аварии.
- Вытянуть пин, чтобы буй всплыл на поверхность. **10 баллов.** Шаг считается выполненным, если команда извлекла пин, удерживающий петлю буя и буй всплыл на поверхность.
 - Извлечь спасательный буй из воды 5 баллов.

Шаг считается выполненным, если буй извлечен из воды.

• Присоедините установку для поднятия узла к корпусу для извлечения на поверхность - **20 баллов**.

Шаг считается выполненным, если карабин закреплен на U-болте на корпусе узла и не слетает после завершения установки.

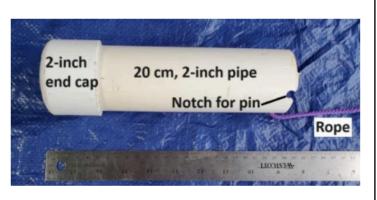
ИТОГО: 50 баллов


Описание макетов

Название	Фото	Описание

ПРЕМОТОТЕХНИКИТОТОТЕХНИКИ

Мультифун кциональн ый узел



Рама узла изготовлена из трубы ппр 20, 4 тройников ппр 20, двух угольников ппр 20, и двух переходных тройников ппр с 20 на 25. Для установки карабина предусмотрен U-образный рым-болт.

Рама присверлена к пластиковому ящику. Ящик утяжелен и находится на дне. Для установки буя предусмотрена труба ппр 90 (может быть заменена на больший диаметр) длиной 12 см.

Под трубкой расположено отверстие для установки пина. Чтобы пин удерживался в отверстии корзины со внутренней стороны он вставляется в трубку ппр 20.

Буй

Изготовлен из трубки ппр 63 длиной 20 см с заглушкой (может быть заменен на трубку 50мм и соотв. заглушку). К бую привязана веревка с петлей на конце. Длина веревки не более половины глубины бассейна (<50 см). На конце веревки - петля для крепления пина.

Micro Onderwater Roi		Также с двух сторон буйка предусмотрены прорези для установки пина. В верхней части буя расположен плавучий материал, чтобы буй всплыл на поверхность.
Коннектор	36 cm	Изготовлен из трубки ппр 20 длиной 36 см и тройника д20.
	Left: The pin holding the recovery float. The recovery float rope is stored inside the float, above the pin. The pin passes through a loop in the rope, holding the rope in place until the pin is removed. Right: Two notches drilled into the bottom of the recovery float hold the pin in place. The recovery float pin.	Веревка спасательного буя располагается внутри него, над пином. Пин проходит через петлю веревки, удерживая веревку на месте до тех пор, покапин не будет удален. Две выемки, просверленные в нижней части буя, удерживают пин на месте.
Установка для поднятия	Rope 12 cm Carabiner The MATE ROV Competition provided recovery line.	Изготовлена из трубки ппр 20 длиной 12 см и тройника. На трубке закреплена веревка, моделирующая шнур для поднятия. На тройнике закреплен карабин. Часть карабина, которая крепится с тройнику, обмотана изолентой, чтобы карабин был зафиксирован и не прокручивался.

ПРЕМОТОТЕХНИКИТОТОТЕХНИКИ

The MATE ROV Competition provided recovery line attached to the #310 U-bolt bale on the multifunction node.

Пример карабина: https://www.amazon.co

m/dp/B08GFX9PFN/ref =pe_386300_4401354 90_TE_item

Общий вид

ЗАДАЧА 2: SMART кабель для наблюдения за океаном

Кабели для научного мониторинга и телекоммуникации (Science Monitoring And Reliable Telecommunications, SMART) — это проект по оснащению подводных кабелей датчиками для сбора данных о состоянии океана и мониторинга сейсмической активности. Кабели SMART являются именно «умными» в том смысле, что они используют трансокеанскую кабельную энергетическую и коммуникационную инфраструктуру для сбора и передачи данных о температуре, давлении и сейсмическом ускорении — все это важные параметры окружающей среды глубокого океана, которые в настоящее время недостаточно изучены. В основе «умной» инновации лежит ретранслятор SMART, в котором размещены датчики, измеряющие температуру, давление и сейсмические данные, а также имеется вывод для телекоммуникационного кабеля. Телекоммуникационный кабель состоит из медного провода, к которому датчики подключаются для подачи питания, и оптоволокна для передачи данных, что позволяет обмениваться данными датчиков в режиме реального времени.

2.1. Установка SMART кабеля (шаги этой подзадачи выполняются в указанном порядке)

• Проложить кабель SMART через две направляющие - **5 баллов за каждую**, **10** всего

Шаг считается выполненным если кабель проходит через две точки (ппр трубки) направляющей.

Примеры установки кабеля. А - кабель установлен **неверно** и проходит через одну точку. **В -** кабель установлен **верно** и проходит через две точки. **С -** кабель установлен **неверно** и проходит через одну точку.

- Установить ретранслятор SMART в отведенном месте. **10 баллов** Шаг считается выполненным если ретранслятор установлен в синюю рамку, никакая его часть не выступает за границы рамки и ретранслятор не контактирует с ТНПА.
- Извлечь конец кабеля SMART на поверхность со стороны бассейна. **5 баллов** Шаг считается выполненным, если кабель проложен через две направляющие, ретранслятор установлен и оба конца кабеля находятся на поверхности.

2.2 Подключение док-станции АНПА к ретранслятору SMART кабеля (данная подзадача выполняется только после выполнения шагов задачи 2.1.)

- Извлечь разъем питания из док-станции АНПА. **10 баллов** Шаг считается выполненным, если разъем удерживается ТНПА и не контактирует с док-станцией.
- Установить разъем питания **10 баллов**Шаг считается выполненным, если разъем не контактирует с ТНПА и вставлен в порт ретранслятора.

Итого: 45 баллов.

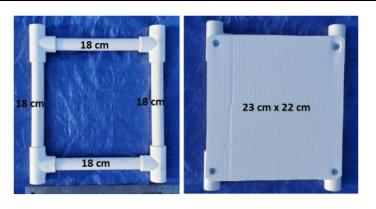
Описание макетов

Название	Фото	Описание
Направляю щие (2 шт)	12 cm 12 cm 15 cm 15 cm 12 cm	Изготовлены из трубок ппр 20, и фитингов соответствующе го размера. Нижняя часть конструкции утяжелена.
SMART кабель с ретранслят ором	#6 Screw hook 9 cm 16 cm	Изготовлен из труб ппр 50, двух заглушек и тройника соответствующе го размера. Для захвата предусмотрен крюк. С двух сторон ретранслятора прикреплен кабеля подбирается такой длины, чтобы два конца кабеля можно было расположить на поверхности при установке ретранслятора в рамку. Внутри открытого отверстия тройника установлена лента Велкро

ПРЕМОТЕНТИ РЕЗВИТИЯРОБОТОТЕХНИКИ

(петельки) для крепления разъема. Изготовлена из Рамка для установки трубок ппр 20, 4 кабеля тройников и утяжелена. 50 cm Разъем Изготовлен из #6 screw hook питания трубки ппр 20, тройника и АНПА заглушки. Для удобства 6 cm 12 cm захвата в Rope тройник установлен крюк. К заглушке прикреплена веревка длиной

4 м (длина может быть


The power connector inserted into the SMART repeater.

сокращена. Другой конец веревки привязан к док-станции. На конце разъема закреплена лента Велкро (крючки). Разъем утяжелен и вначале расположен на платформе док-станции.

ПРЕМОТОТЕХНИКИТо робототехники

Док-станци я АНПА

Платформа док-станции квадрат из трубок ппр 20 длиной 18 см и четырёх тройников. Сверху закреплен прямоугольник из листового материала (например, гофрированный пластик, фомакс и т.д.) Платформа утяжелена.

ЗАДАЧА 3: Изучение экосистем и сохранение видов

Одной из проблем сохранения коралловых рифов является поиск способов неинвазивного лечения и продления жизни кораллов.

В качестве одного из вариантов ученые из исследовательского центра KAUST RSRC предложено использование пробиотиков для лечения больных кораллов и укрепления здоровых коралловых экосистем. Исследования в данном направлении сосредоточены на идее о том, что здоровые организмы и экосистемы зависят от здоровых микробиомов. Такое «управление микробиомом» основано на гипотезе, что микробы являются ключевыми членами «холобионта», который является собирательным термином для организма-хозяина и множества других видов, живущих на нем, рядом или внутри него, и что они соединяют все объекты экосистемы быстро реагируют на манипуляции с немедленным эффектом, и ими легче манипулировать, чем макроорганизмами.

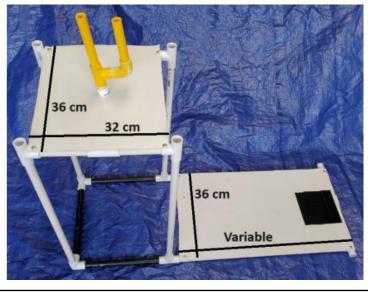
Для реализации этой идеи была разработана постоянная станция для исследования коралловых рифов, включающая в себя участки коралловых рифов, исследовательские площадки, где пробиотики вводятся инвазивно в кораллы и с помощью системы распыления. Также станция включает в себя набор датчиков и доплеровские приемники для регистрации параметров окружающей среды.

Похожие методы исследования используются для наблюдения и сохранения видового разнообразия рыб. Например, использование системы акустических датчиков позволяет определить потенциальные места нереста рыб.

Подзадача ЗА. Умные рифы

- 3.1 Пробиотики (шаги выполняются в указанной последовательности)
- Разместить систему распыления пробиотиков в отведенном месте **10 баллов.** Шаг считается выполненным, если система распыления не контактирует с ТНПА и полностью расположена в желтой рамке.
- Установить систему распыления пробиотиков на коралл **10 баллов.** Шаг считается выполненным, если кольцо распылителя не контактирует с ТНПА и надето на коралл.
- Активировать систему распыления **5 баллов.**Шаг выполнен, если команда повернула вентиль на 360 градусов и продемонстрировала это судье на экране пульта управления.

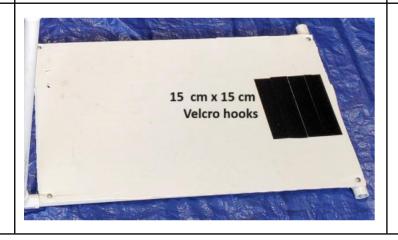
3.2 Восстановление коралловых рифов (может быть выполнена в любое время)


• Пересадить мозговой коралл – 10 баллов.

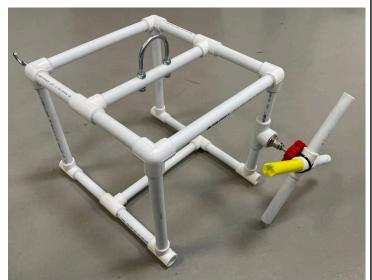
Шаг считается выполненным, если коралл установлен на квадратную область с лентой Велкро. Любая часть нижней части коралла может касаться любой части квадрата липучки. Если в конце выполнения миссии коралл слетел с квадратной области с лентой Велкро и не был возвращен обратно, то баллы за этот шаг не начисляются.

Описание макетов

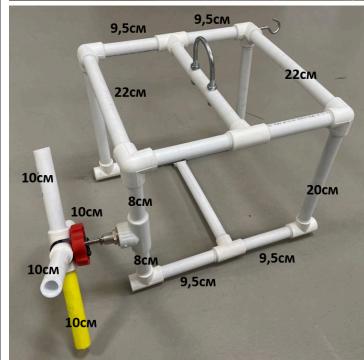
Название	Фото	Описание
Коралловы й риф	Variable 30 cm Variable 30 cm 30 cm	Изготовлен из труб ппр 20, утяжелен. Высота не более 40 см. На рамах закреплены прямоугольники листового материала (гофрированнный пластик, фомакс и т.п.)



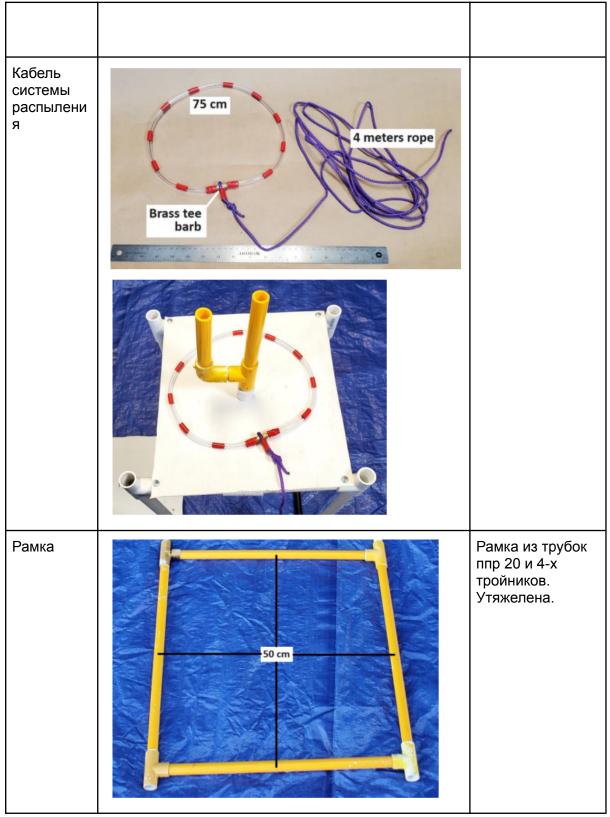
Больной коралл



Область для установки мозгового коралла

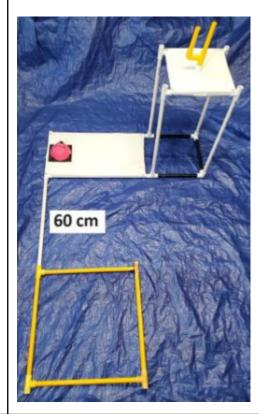


Система распылени я



Изготовлена из трубок ппр D20

Мозговой коралл



Пластиковая чаша диаметром 12-15 мм. Для переноса предусмотрена петля 30 см с закрепленной плавучестью. По краям приклеена лента Велкро (петельки). Чаша утяжелена (в качестве утяжелителя используется камень закрепленный на липучку, но онжом использовать в качестве груза и другие материалы.

Общий вид

По усмотрению площадки риф может быть соединен с рамой или нет. Однако рама не может быть удалена от рифа более чем на 60 см.

Подзадача 3Б. Внутренние озера и водные пути

- 3.3 Определить место нерестилищ осетровых
- Извлечь акустический приемник 10 баллов.

Шаг считается выполненным, если один из трех акустических приемников извлечен из воды.

- Определить местоположение потенциального нерестилища. до 15 баллов.
 - о Построить график местонахождения осетровых по данным акустического приемника **10 баллов**.
 - Определить потенциальное место нереста 5 баллов.

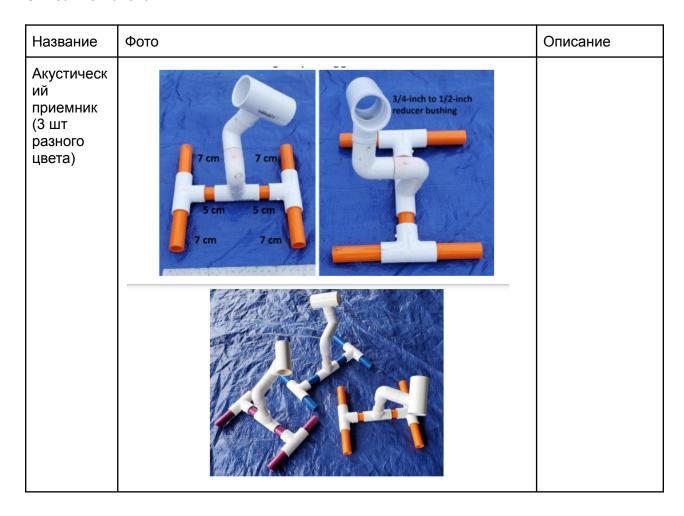
После извлечения акустического приемника судья передает команде таблицу с данными о количестве зарегистрированных осетров в день каждым датчиком в течение 8 дней.

После построения графика команда должна определить около какого датчика наблюдается наибольшая концентрация осетров, которая является потенциальным местом нереста и сообщить свое решение судье.

3.4. Охарактеризовать среду обитания в потенциальном нерестилище (шаги выполняются в любом порядке и может быть выполнен независимо от 3.3).

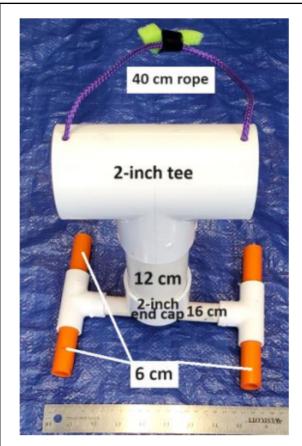
• Разместить допплеровский датчик движения – 10 баллов.

Шаг считается выполненным, если приемник полностью расположен в оранжевой рамке в предполагаемом месте нереста и не контактирует с ТНПА.

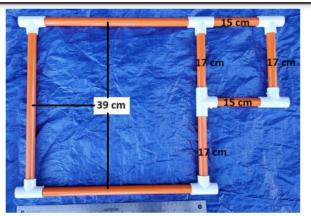

• Получить образец осадка – 10 баллов.

Шаг считается выполненным, если один из пяти камней-образцов извлечен из воды.

Итого: 80 баллов.



Описание макетов



Допплеров ский датчик

Область нереста

The designated area for the ADCP with the sediment area attached. The designated area is constructed from $\frac{1}{2}$ -inch PVC pipe.

Образцы осадков

Снизу и сверху каждого образца приклеена лента Велкро (крючки) 2*2 см

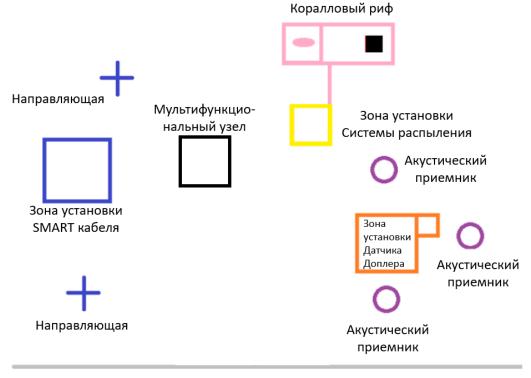
Штрафные баллы:

Безопасность: во время прохождения миссии команда должна следовать правилам техники безопасности, установленным на площадке. В случае их нарушения команда получает **5 штрафных баллов**

Натяжение кабеля: участник команды не может тянуть за кабель ТНПА с целью его перемещения и поворота. В случае нарушения данного правила в первый раз судья выносит предупреждение команде. При последующих нарушениях команде начисляется **5 штрафных баллов**.

Общение: во время выполнения миссии участникам команды запрещается общаться между собой по поводу местоположения аппарата и необходимости его поворота. Допускается общение между пилотом и управляющим кабелем по поводу положения кабеля и его подаче. В случае нарушения данного правила в первый раз команде выносится предупреждение. При последующих нарушениях команде начисляется **5 штрафных баллов**

Помощь водолаза: в случае, если команде требуется помощь водолаза для поднятия и/или освобождения ТНПА, команда имеет право запросить помощь. Время попытки при помощи не останавливается. Команде начисляется **5 штрафных баллов**.


Общение с судьями и решение спорных вопросов

Судьи миссии и другие официальные лица соревнований будут общаться только с участниками команд. Судьи и должностные лица НЕ будут общаться с наставниками, родителями или другими лицами, не являющимися участниками, по вопросам прохождения миссии, проблемах или других вопросах, за исключением брифинга до соревнований.

При возникновении спорных ситуаций участники команды должны обратиться к судьям миссии. Судьи обсудят и попытаются решить проблему. Если решение не может быть принято, судьи миссии проконсультируются с главными судьями и техническим менеджером соревнований для решения проблемы. Итоговое решение судей является окончательным и оспариванию не подлежит.

Расстановка макетов

CTAPT

Лист оценки

(появится до февраля)