
 
 

 
 
 

DIVING INTO HARDWARE 
The Young Inventor Series 

 
 
 

 
OPEN-SOURCE CURRICULUM 

 
Revision 1.02 

 
 
 
 
 
 
 
 

 



 

 

Date: ​ ​ 11/13/2017 
Author:​​ Eric Lin 
Contributors: ​ Edward Li 
 
Revision History: 

●​ 1.00: First Revision 
●​ 1.01: Added DC Motor  
●​ 1.02: Added CCD and Nightlight synthesis project 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 



 

 

 
 

Materials 
 

Item Qty Notes How To Purchase 

400 tie breadboard 1   

Male to Male Wires 15   

*Common Cathode Display 1   

470 Ohm Resistor 2   

4.7K Ohm Resistor 2   

10K Resistor 2   

Potentiometer (100K) 1   

LED 2   

4-Pin Button 2   

Arduino Uno 1   

USB Cable (A-B) 1   

2N7000 MOSFET 2 N-Channel MOSFET. TO-92 Package  

9V Battery 1   

9V Battery Holder 1   

*SSFGA6115 2 P-Channel MOSFET.  TO-220 Package  

10 mm RGB LED (Common 
Cathode) 

1   

    

*DIP 14 - NOR 1   

 
 
 
 
 
 

2 



 

 

 
 
 

Forward 
​  

At this point your students are familiar with the level one Barnabas Bot and it’s 
functionality. This curriculum is meant to expand on that kit by giving several loosely related 
electrical/programming projects which offer insight into previously unexplored concepts. This 
curriculum was made with the nominal age of 12 years old in mind and is intended to take place 
over eight 1:30 hour sessions. Please note that this curriculum can be taught as a stand alone 
class, however some assumptions have been made about prior experience with electronics and 
programming. One last thing I want to mention is that I will be showing both an Ardublock 
method and an Arduino method for all of the projects included in this curriculum. As always, 
please contact us at Barnabas Robotics with any questions or comments about this curriculum. 
We consider all of our material to be a work in progress, tweaking things as we receive 
feedback from people such as yourself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 



 

 

UNIT 1: The Button 

 
​ Up to this point the control that your students have had over their robots has left 
something to be desired. I am specifically referring to the lack of a start or stop button (short of 
connecting and disconnecting power). This means that as soon as code is uploaded to your 
robot it begins acting. If only there was some way to communicate with your robot that you want 
it to start at a specific time.  
 
​ Luckily there is a way to do just that. Using a button we can tell our robot to start only 
after the button is pressed. Before going into detail about how to accomplish this I first want to 
explain how the button differs from all the other components of the robot they have used so far. 
 
​ The LED, buzzer, and servo motors are what are known as outputs of the robot. The 
robot tells those pieces what to do. The button is fundamentally different as the robot can’t send 
a signal to the button and make it press itself. The robot instead waits for the button to tell it that 
it has been pressed. The button, and components like it are known as inputs. I like to think that 
inputs tell the robot something while outputs listen to the robot and act accordingly. 
 

Week 1​  
 

Now that we understand the difference between outputs and inputs we are ready to 
begin wiring our button. 
 
​ I want to start with a simple circuit to demonstrate how the button works. The button acts 
as an open in our circuit, no current can flow through it. However when the button is pressed 
metal to metal contact is made which closes the circuit and allows current to flow through the 
button.The analogy I like to use is a drawbridge. Traffic can only flow through a drawbridge 
when it is lowered, much in the same way that current can only flow through the button if it is 
pressed. The following schematic demonstrates this very well; 

4 



 

 

 
Have your students attempt to wire this schematic without the use of the circuit diagram below, 
only referencing it if they need help(If you are continuing with the fully built and wired Barnabas 
Bot don’t be concerned that those components are not visible on this schematic); 

  
​ Have your students create this circuit and notice that the LED only turns on when the 
button is pushed. This is consistent with my explanation earlier that current only flows through 

5 



 

 

the button when it has been pressed. Unfortunately this circuit has nothing else to teach us so 
let’s move on to the next circuit. 
Note: Have the students build this circuit without an explanation of how the button works. Then 
ask them to explain the behavior of the circuit and see if they can guess how the button 
functions. 
 
Below is a schematic of the button that instead has the LED wired to a programmable pin (likely 
the way it was wired before). Have your students attempt to wire this circuit; 

 
If your students are having a hard time wiring the schematic above here is a finished circuit 
diagram; 

 

6 



 

 

 
In this circuit we have pin 1 connected to 5V through what’s known as a pull-up resistor, a 
resistor that simply leads to 5V. Pin 1 is also connected to ground(GND) through the button, 
meaning that it is only connected to ground when the button is pressed. Notice that when the 
button is pressed there is a resistor between 5V and GND preventing us from shorting the 
circuit. Also, that resistor in effect adds ‘distance’ between 5V and pin 1. This means that when 
the button is pressed pin 1 is now ‘closer’ to GND and now will read GND rather than the 5V it 
reads otherwise. 
 

Week 2 
 
​ With our circuit completed last week we can move on to programming. 
 

Ardublock: 
 
​ I would like to reiterate the assumption of prior experience before delving into the coding 
specifics. If your students are not familiar with Ardublock consider introducing the basics and 
have them complete a simple task, like lighting an LED, before attempting to code the button. 
 
To complete the task of giving the robot a start button we will need to learn how to use the while 
loop: 

 
The while loop is found in the controls tab of Ardublock. The while loop will run a list of 
commands over and over as long as a condition is met. In our circuit, because pin 1 is at 5V 
until the button is pressed we would like our tested condition to look as follows; 

7 



 

 

  
The digital pin, test, and HIGH blocks are found in the pins, tests, and variables/constants tabs 
respectively. The digital pin block will check the value of the pin specified, for us this is pin 1. 
Remember that because the button is an input we want to listen to what that pin is telling us. 
The strange ‘==’ test block is simply asking, ‘are these two things equal?’. An important note is 
that this is the test block that accepts rounded input blocks rather than the sharp edged or 
puzzle piece test blocks. Lastly, the HIGH block simply refers to 5V. So, what this test ultimately 
is asking is ‘is pin 1 high(5V)?’. As long as the answer is yes the robot will continue to execute 
the commands inside of the while loop. When the answer becomes no the robot moves on to 
subsequent lines of code. 
 
​ So let’s construct the full code. At the moment let’s just attempt to make our robot wait 
until the button is pushed to blink the LED. 

 
The above code does just what we were asking for. Notice that the command inside the while 
loop is simply a delay block. Something must be input into the commands section of the while 
loop for Ardublock to allow your code to be uploaded and the delay block is a good candidate as 
it allows us to keep other pins free. It also means that the robot will only check the button every 
10th of a second. There is however a small issue with our code. After the button is pressed the 
LED blinks only once before returning to the beginning of the loop do. This means that we have 
to press the button once for every time we want to see the LED blink. That seems extremely 
inefficient. instead I want the robot to blink indefinitely after the button is pressed. 

8 



 

 

I’m going to accomplish this by making use of the while loop again. Remember that the 
while loop will continue to run as long as the condition is met. So, if we choose a condition that 
is always true the while loop will run forever, like so; 

 
Now after the button is pressed the robot begins to blink the LED, just like before. The 

difference is now it will continue to do so as long as 1=1, which I assume will always be true. 
 

You can reset the robot by pressing the reset button on the Arduino. This will revert the code 
back to the beginning of the loop do. 
 
​ If your students have their Barnabas Bots they can do more complex things as shown 
below; 

 

9 



 

 

 
This code will blink before the button is pressed as a kind of standby, then begin dancing after 
the button is pressed. 
 
​ The last method of programming the button that I will show you is perhaps the most 
useful. I can program the button to toggle between two or more states. For example, if I press 
the button once the LED will turn on, and if I press the button again the LED will turn off. The 
way I plan to do this is by using multiple while loops with the same condition; 

 
As you can see these while loops are both using the condition of the button being pressed or 
not. If I press the button once the first while loop will be exited and the second will begin to run. 
If the button is pressed again the second while loop is exited, the loop repeats, and the first 
while loop begins to run again.  
 

10 



 

 

Now I have to choose the commands for each while loop. For this example I will keep 
things simple. I merely want to be able to toggle an LED between on and off. Furthermore I want 
the LED to begin in the off state. I meet those conditions by adding to the code in the way 
shown below; 

 
Notice that in the first while loop the pin is set low, meaning the the LED will begin in the 

off state. There is a small problem with the above code however, have your students upload this 
code and see if they can spot the unwanted behavior. Bonus points if they guess why it’s 
happening. 

 
So what is happening and why? You may notice as you and your students press the 

button in an attempt to change the state of the LED that sometimes the button seems 
unresponsive. Sometimes it works and sometimes it doesn’t, giving the impression that the 
button is of low quality. As it turns out this behavior has nothing to do with the quality of the 
button. It is a direct result of an oversight in our code. If you think about a human being pressing 
the button, it doesn’t happen instantaneously, does it? Their finger is on the button for some 
amount of time. During that time the program is constantly switching between the two while 
loops, as the condition for neither of them is true. When their finger releases the button, who 
knows which while loop will be running.  

 
The solution for this is fairly simple, but allows for some amount of tinkering. I simply put 

delay blocks after each while loop as a buffer between the while loops; 

11 



 

 

 
The delay time needs to be a reasonable amount of time for a person to press down and 
release the button. If the time is too short, we’ll have the same problem as before. If the time is 
too long, there will be some latency time between pressing the button and having the state of 
the LED actually change. Both of these problems, while not a matter of life and death to us, are 
important to people making products. The people who make your lamps, microwaves, phones, 
etc. care very much about these problems because they affect how many of your product is 
sold. These people put hours into figuring out what delay time is appropriate. We won’t spend 
hours on it but I do encourage you to challenge the class to find what they feel is the best delay 
time. 
 
​ As it turns out, there is an even better method of addressing this issue. What we can do 
instead is place additional while loops in place of the delays. Ones with the opposite condition 
as the ones currently in the code. That way pressing the button will exit the while loop 
containing the current state we are in, but the new while loop will hold the code in a standby 
state until the button is let go; 

12 



 

 

 
The new while loops have the button set equal to LOW as their condition. Meaning they are 
exited for the exact opposite reason that the HIGH while loops are exited. This ensures that the 
state of the LED only changes after a ‘full’ button press (both pressing and letting go), making 
the previous problem of skipping a state impossible. What’s peculiar about the new while loops 
is that they don’t contain any commands. This is fine as we are only using these loops as a 
standby while someone’s finger is still on the button. 
 

Arduino: 
 
As promised, I will provide an alternative method for people interested using the base Arduino 
IDE, however I will still assume a base level of knowledge when explaining the code. That being 
said, the level of prior experience I expect is not very high and I will be giving detailed 
explanations throughout the curriculum. 
 
​ First of all, when using Arduino I use variables more liberally than in Ardublock. I find that 
assigning all my pins named variables in Ardublock becomes bulky and clumsy, while assigning 
variables in Arduino, while typing intensive, helps remind me of the robot’s physical 
specifications, how the robot is pinned, etc. If you or some of your students choose not to use 
variables they will need to keep track of the correct pin numbers throughout their code. 
 

13 



 

 

​ Because I will be using variables I will start like so; 
 
int LED = 7; 
int BUTTON = 1; 
 
Simply giving the pins which have the LED and button attached names that reference what they 
do. It is much easier for me to remember to turn the LED on than to turn pin 7 on, even if it takes 
longer to type. Also notice the int written before both. Int is just there to tell Arduino what kind of 
number BUTTON and LED are. They are both integers. This is actually pretty important as 
many of the functions in Arduino only accept integers, particularly functions that relate to pins. 
 
After this we begin writing inside the void setup; 
void setup() { 
​ pinMode(BUTTON,INPUT); 
​ pinMode(LED,OUTPUT); 
 
You can already see the use of naming the pins. Rather than remembering the number of the 
pins, I just need to remember that the button is an input and the LED is an output. Now there is 
one more thing I would like to place in the void setup; 
 
void setup() { 
​ pinMode(BUTTON,INPUT); 
​ pinMode(LED,OUTPUT); 
​ while (digitalRead(BUTTON)==1){ 
​ ​ //Null Statement 
​ } 
} 
 
​ Wait! There’s a while loop inside the void setup! YOU CAN’T DO THAT!! 
 
Yes, yes I can. There are no laws of the universe being broken I promise. As a matter of fact I 
could place the pinMode() functions inside of the void loop if I felt like it. The only real difference 
is that the void setup only runs once. It is for this reason that I place the while loop inside of the 
void setup. The while loop is holding the code at that point, not allowing following lines to be run, 
until the button is pressed. If this while loop was placed inside the void loop, the robot would 
stop after the void loop was finished and wait for the button to be pressed again. I want to only 
have to press the button once to start my robot, and the reset button once to stop the robot. 
 
​ Question is, what is that while loop actually saying? The digitalRead(BUTTON) 
statement gives the boolean value of the button pin. Either high(1) or low(0). The ==1 asks if 
that value is 1 and, if it is, run the commands in the while loop. You’ll notice that I didn’t actually 

14 



 

 

put any commands in the while loop. I instead made the comment //Null Statement, to remind 
myself and to let anyone else that views the code that the while loop is empty on purpose. 
 
​ The void loop is much simpler. I’m just blinking an LED; 
 
void loop() { 
digitalWrite(LED,HIGH); 
delay(1000); 
digitalWrite(LED,LOW); 
delay(1000); 
} 
 
Here is the code written in the Arduino IDE; 

 
​ If your students are using their fully built and wired Barnabas bot they can consider 
working movement into this code using the robot’s servo motors. Doing this in Arduino is fairly 
complicated though. This is because unlike Ardublock, Arduino does not tell our robot how to 
use it’s servo motors. This is a task that we must do ourselves. 
 
We must start by importing a functions library into Arduino; 
 
#include <Servo.h> 
 
Doing this allows us to appropriately call some of the objects we are trying to control servo 
motors, and Arduino now knows what we mean if we say that something is a Servo motor. Just 
to give you an idea of what is included in the Servo.h library I have included the source code. 
This should give you an idea of exactly why I want to include Servo.h. It lets me avoid having to 

15 

https://ccrma.stanford.edu/courses/250a-fall-2003/docs/avrlib-new/servo_8h-source.html


 

 

recreate that source code whenever I want to control a servo motor. Instead I am essentially 
telling Arduino; “hey, here is your homework. I need you to understand how to operate a servo 
motor.” This way I can just say servo whenever I want to treat an object as a servo. 
 
Additionally I want to include my variable names for the LED and button like before; 
 
int BUTTON = 1; 
int LED = 7; 
 
Also I want to create names for my motors; 
 
 Servo leftArm; 
Servo rightArm; 
Servo head; 
 
​ At this point Arduino knows nothing about these servo motors other than that they exist. 
At this point the motors are purely virtual. We will give the specifics of the motors in the void 
setup; 
 
void setup() { 

pinMode(BUTTON,INPUT); 
pinMode(LED,OUTPUT); 
leftArm.attach(9); 
rightArm.attach(10); 
head.attach(11); 
while(digitalRead(BUTTON)==1){ 

​ ​ digitalWrite(LED,HIGH); 
​ ​ delay(1000); 
​ ​ digitalWrite(LED,LOW); 
​ ​ delay(1000); 
​ } 
} 
 
Some things remain the same in the void setup. We are still assigning pin modes to the LED 
and button, and the while loop is still inside of the void setup. This time however I am including 
the LED blink inside the while loop. So now our robot blinks before the button is pressed to let 
us know it’s ready. In addition we have included some attach statements referencing our 
recently named virtual servo motors. Let’s take a closer look at one of those statements; 
 
leftArm.attach(9); 
 

16 



 

 

​ First we can see that whatever this line of code is doing, it is referencing the leftArm 
Servo motor. Immediately after that is .attach. This is a good opportunity to talk more about 
coding conventions at large. Whenever you see thing.otherthing in code, the otherthing is 
performing some sort of action on the first thing. You can think of some real life analogies to this 
to help the students understand. For example my morning may look something like this if it took 
place in Arduino; 
 
eric.wakeUp; 
eric.getDressed; 
eric.eatBreakfast; 
eric.goToWork; 
eric.contemplateExistance 
eric.fendOffExistentialDread 
eric.weep 
You’ll also notice that the (9) at the end of the .attach statement. That gives Arduino the 
information that the leftArm servo motor is attached to pin 9. Keep in mind that this is just how 
my robot is wired, if your left arm is attached to a different pin make sure that is reflected in your 
code. 
 
​ The void loop is fairly simple as we just need to move some motors; 
 
void loop() { 
​ leftArm.writeMicroseconds(1000); 
​ rightArm.writeMicroseconds(1000); 
​ head.writeMicroseconds(1000); 
​ delay(1000); 
​ leftArm.writeMicroseconds(2000); 
​ rightArm.writeMicroseconds(2000); 
​ head.writeMicroseconds(2000); 
​ delay(1000); 
} 
 
Notice that we are performing another action on each of our motors .writeMicroseconds. That 
action sends a signal of a certain frequency to that particular motor and the motor perceives that 
signal as a command to move to a certain position. 1000 and 2000 are at the extremes of the 
servo motors’ range of motion with 1500 lying in the middle. 
 
​ Once everything is put together the end result should look like the following; 

17 



 

 

 

 
​ THe final method of programming the button, the toggling method, is fairly 
straightforward. I can use this method to toggle between two or more states. For example, if I 
press the button once the LED will turn on, and if I press the button again the LED will turn off. I 
will start in the same place I always do, by creating the needed variables and setting up the 
pins; 
 
LED=7; 
BUTTON=1; 
 
void setup(){ 
pinMode(LED,OUTPUT); 
pinMode(BUTTON,INPUT); 
} 
 
Next I want to populate the loop do with two while loops, each with the same condition; 

18 



 

 

 
void loop(){ 
while(digitalRead(BUTTON)==HIGH){ 
  } 
while(digitalRead(BUTTON)==HIGH){ 
  } 
} 
 
As you can see these while loops are both using the condition of the button being pressed or 
not. If I press the button once the first while loop will be exited and the second will begin to run. 
If the button is pressed again the second while loop is exited, the loop repeats, and the first 
while loop begins to run again.  
 

Now I have to choose the commands for each while loop. For this example I will keep 
things simple. I merely want to be able to toggle an LED between on and off. Furthermore I want 
the LED to begin in the off state. I meet those conditions by adding to the code in the way 
shown below; 
 
void loop(){ 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,LOW); 
  } 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,HIGH); 
  } 
} 
 

Notice that in the first while loop the pin is set low, meaning the the LED will begin in the 
off state. There is a small problem with the above code however, have your students upload this 
code and see if they can spot the unwanted behavior. Bonus points if they guess why it’s 
happening. 

 
So what is happening and why? You may notice as you and your students press the 

button in an attempt to change the state of the LED that sometimes the button seems 
unresponsive. Sometimes it works and sometimes it doesn’t, giving the impression that the 
button is of low quality. As it turns out this behavior has nothing to do with the quality of the 
button. It is a direct result of an oversight in our code. If you think about a human being pressing 
the button, it doesn’t happen instantaneously, does it? Their finger is on the button for some 
amount of time. During that time the program is constantly switching between the two while 
loops, as the condition for neither of them is true. When their finger releases the button, who 
knows which while loop will be running. 

19 



 

 

 
The solution for this is fairly simple, but allows for some amount of tinkering. I simply put 

delay blocks after each while loop as a buffer between the while loops; 
 
void loop(){ 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,LOW); 
  } 
delay(500); 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,HIGH); 
  } 
delay(500); 
} 
 
The delay time needs to be a reasonable amount of time for a person to press down and 
release the button. If the time is too short, we’ll have the same problem as before. If the time is 
too long, there will be some latency time between pressing the button and having the state of 
the LED actually change. Both of these problems, while not a matter of life and death to us, are 
important to people making products. The people who make your lamps, microwaves, phones, 
etc. care very much about these problems because they affect how many of your product is 
sold. These people put hours into figuring out what delay time is appropriate. We won’t spend 
hours on it but I do encourage you to challenge the class to find what they feel is the best delay 
time. 
 
​ As it turns out, there is an even better method of addressing this issue. What we can do 
instead is place additional while loops in place of the delays. Ones with the opposite condition 
as the ones currently in the code. That way pressing the button will exit the while loop 
containing the current state we are in, but the new while loop will hold the code in a standby 
state until the button is let go; 
 
void loop(){ 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,LOW); 
  } 
while(digitalRead(BUTTON)==LOW){ 
// Null Statement 
  } 
while(digitalRead(BUTTON)==HIGH){ 
  digitalWrite(LED,HIGH); 
  } 

20 



 

 

while(digitalRead(BUTTON)==LOW){ 
// Null Statement 
  } 
} 
 
The new while loops have the button set equal to LOW as their condition. Meaning they are 
exited for the exact opposite reason that the HIGH while loops are exited. This ensures that the 
state of the LED only changes after a ‘full’ button press (both pressing and letting go), making 
the previous problem of skipping a state impossible. What’s peculiar about the new while loops 
is that they don’t contain any commands. This is fine as we are only using these loops as a 
standby while someone’s finger is still on the button. 
 
​ This ends the button lesson. 

The RGB LED 
​  

Another tool to be used in tandem with the button, and just in general, is the RGB 
(red-green-blue) LED. This LED acts like three separate LEDs but with a common cathode. In 
other words, three LEDs that share their short (-) leg. 

 

 
 
​ THe RGB LED behaves just like three individual LEDs, with only a slight change in how 
it is wired; 
 

21 



 

 

 
 

I now have access to all three colors on the LED through the pins 5, 6, and 7.  
 
​ The RGB LED provided in your diving into hardware kit is capable of turning on all three 
colors at once by setting pins 5, 6, and 7 HIGH, but can turn on the colors in any combination. 
This piece of hardware can provide some flare to the button curriculum, allowing you to toggle 
color patterns rather than just toggling the single colored LED on and off. 
 
​ Let’s try and utilize this new LED with in the last week 2 exercise. 
 

Ardublock: 
 
​ Let’s begin at this point; 

22 



 

 

 
Remember that by organizing our code into successive while loops with alternating conditions, 
like we have here, we get rid of the latency problem completely. Pressing the button will always 
have exactly the effect that we want as soon as it is pressed. Also remember that each of the 
while loops with LOW conditions will remain empty, they are only there to stop the while loop 
after from being skipped. Next is to just set the pins HIGH and LOW at the right time; 

23 



 

 

 

24 



 

 

 
​ The code above alternates between the first, second, and third LED being on. So this 
code will alternate between the blue, green, and red LED being on. 
 

Arduino: 
 
​ Here’s where we will begin; 
 
RED=7 
GREEN=6 
BLUE=5 
BUTTON=2 
 
void setup(){ 
  pinMode(RED,OUTPUT); 
  pinMode(GREEN,OUTPUT); 
  pinMode(BLUE,OUTPUT); 
  pinMode(BUTTON,INPUT); 
} 
 
I have started by labeling each of the pins used with variables to help me keep track of things. 
Afterwards I assigned the pinmode of each of those pins. Each of the LED pins need a signal 
sent to them to function, so they have been labeled as OUTPUT. The button, for reasons that 
have been described before, has been labeled as an INPUT. 

25 



 

 

​ Next we create the structure of successive while loops that will let us toggle between 
states with our button; 
 
void loop(){ 
  while (digitalRead(BUTTON)==HIGH){ 
  } 
  while (digitalRead(BUTTON)==LOW){ 
  } 
  while (digitalRead(BUTTON)==HIGH){ 
  } 
  while (digitalRead(BUTTON)==LOW){ 
  } 
  while (digitalRead(BUTTON)==HIGH){ 
  } 
  while (digitalRead(BUTTON)==LOW){ 
  } 
 
Notice that the condition of each while loop is the opposite of the last. Remember that by doing 
this we eliminate latency in our button presses as well as stop our code from inadvertently 
jumping ahead. 
 
​ Finally we just need to populate the while loops with the correct digitalwrite statements, 
remembering that any while loop with a LOW condition will be left empty; 
 
void loop(){ 
  while (digitalRead(BUTTON)==HIGH){ 
    digitalWrite(RED,HIGH); 
    digitalWrite(GREEN,LOW); 
    digitalWrite(BLUE,LOW); 
  } 
  while (digitalRead(BUTTON)==LOW){ 
    //Null Statement 
  } 
  while (digitalRead(BUTTON)==HIGH){ 
    digitalWrite(RED,LOW); 
    digitalWrite(GREEN,HIGH); 
    digitalWrite(BLUE,LOW); 
  } 
  while (digitalRead(BUTTON)==LOW){ 
    //Null Statement 
  } 

26 



 

 

  while (digitalRead(BUTTON)==HIGH){ 
    digitalWrite(RED,LOW); 
    digitalWrite(GREEN,LOW); 
    digitalWrite(BLUE,HIGH); 
  } 
  while (digitalRead(BUTTON)==LOW){ 
    //Null Statement 
  } 
 
Looking through the code, you can clearly see that it toggles between RED, GREEN, and BLUE 
being HIGH. you should be able to verify for yourself that this is in fact true. 
 
UNIT 2: Voltage Dividers & Their Applications 
 

Week 3 

The Voltage Divider 
 
To begin this unit I want to introduce an incredibly common circuit called a voltage 

divider; 
 

 

27 



 

 

​ Start by drawing this diagram and having the students attempt to breadboard it 
themselves. The finished circuit is shown below for clarity; 

  
 
​ The voltage divider does exactly what it sounds like, it divides the voltage in a circuit. By 
making the current travel across two resistors in series a certain amount of the total voltage is 
dropped across each resistor, so that after travelling through the first resistor the voltage in the 
circuit is no longer 5V. What is the voltage at that point in the circuit then? That depends on the 
ratio of the values of the two resistors. For example, if the first resistor in the circuit is ⅓ of the 
total sum of the resistances in the circuit then only ⅓ of the voltage will be dropped across that 
resistor and we would have ⅔ of the original 5V remaining. For the mathematically minded; 
 

R1/(R1+R2)x5V=voltage through LED 
 

​ Because we have a 470 Ohm and 4.7k Ohm resistor we are only losing 1/11 of the 
voltage before reaching the LED, leaving us with about 4.5V. 
 
Now switch the 470 Ohm resistor with another 4.7k Ohm resistor and note the change in the 
LED’s intensity. It may not even turn on! By giving both sides of the circuit equal amounts of 
resistance we have split the voltage in half, allowing only 2.5V to go through the LED. 
 
This shouldn’t come as a surprise to many of the students. After all, we did a similar thing in the 
level one curriculum to show that resistance affects the intensity of the LED. The interesting 
thing about the voltage divider is that we can change the resistor in  the bottom half of the circuit 
to affect light intensity as well. Try replacing the grounded resistor with a 100K Ohm resistor and 
notice the difference in light intensity. By changing the resistance in the alternate path of the 
circuit we have somehow forced more current through the LED.  
 

28 



 

 

The change in intensity is easy to explain using the math of the voltage divider but I would like 
to approach this phenomenon more conceptually. Consider your circuit to be a river, our 
particular river splits into two branches. On one of these paths we have created a very large 
dam, so large that it increases the flow of water (electricity) through the other branch. 
 

The Potentiometer 

​  
 

Now that we have explored the voltage divider we can tackle the potentiometer. Have 
your students attempt to create the following circuit; 

 
​ As always here is a completed circuit diagram for clarity; 

29 



 

 

 
​ So what exactly does the potentiometer do? I mentioned earlier that it was a king of 
variable resistor. That simply means that the value of its resistance can change. The 
potentiometer is a single resistor that is split somewhere into two resistors. As a matter of fact, 
you get to choose where the resistor is split by twisting the dial on the potentiometer. So we can 
split the circuit into a top and bottom just like we did with the voltage divider with one resistor for 
each half. On top of that, this voltage divider is much easier to manipulate if we want to see 
different behavior in our circuit. 
 
Have your students play with the dial of the potentiometer and note the change in light intensity 
from the LED. Then ask them where they think the resistor is split for each kind of behavior (ex. 
When the light is bright the resistor is split so that almost all of it is at the bottom of the circuit). I 
have been using the words top and bottom to describe parts of our circuits for a little while now. 
All I mean by top is nearer to 5V and all I mean by bottom is nearer to GND. 
 
​ Let’s move on to a circuit that allows us to incorporate programming. This circuit is nearly 
identical to the one we just made; 

 

30 



 

 

The only difference is that we are diverting the second branch of the circuit into a programmable 
pin rather than through an LED. Using this circuit we can have our robot tell us exactly what the 
voltage is in the branch of the circuit that previously contained the LED. Let’s get to 
programming! 
 
Ardublock: 
 

I want to start by discussing the goal of the code. Ardublock has a feature called the 
serial monitor which you can print lines of text to. I want the information printed on the serial 
monitor to be the voltage after going through the top of the circuit, through whatever amount of 
the potentiometer that corresponds to. 
 
First I want to print something that corresponds to that voltage to the serial monitor, just as a 
proof of concept. It will help us to look back at the circuit that we just wired together. Notice that 
the programmable pin we are using is labelled A0. This is one of the analog input pins on the 
Arduino. The analog pins are capable of reading voltage values with a high degree of accuracy, 
giving a result between 0 and 1023, which correspond to GND and 5V, and any number in 
between corresponds to a voltage between 0V and 5V. 
 
​  
 

Ardublock: 
 

I remember telling you that I generally don’t like using variables when I use Ardublock. 
This is one of the exceptions. Without variables this section becomes much harder to 
understand. So in order to program this section I need to introduce you to some new block. 
 
First I will introduce the block that lets us create and name variables in Ardublock; 

 
This is the set integer variable block, which is found in the Variables/Constants tab. This block 
will create some variable, which you can name, and gives it some value. In the above case I did 
not bother to change the default name of the variable so my variable is called ‘integer variable 
name’, an absolute classic. I’m also giving it the value of zero. This means that if I were to put 
the variable ‘integer variable name’ anywhere after this block in my code the computer, and our 

31 



 

 

robot, will recognize it as zero. Not a particularly useful variable, but we’ll need to know this for 
later, I promise.  
 
You’re probably wondering what integer variable means. It simply means that the variable can 
only be a certain kind of number, an integer. An integer is a number that can be expressed 
without decimals or fractions, like 1, 4, -10, 1000. Be careful with extremely large numbers 
though, those are considered long form numbers and the computer and robot treat them 
differently. 
​  
There is another block that we need to learn about before we get underway. It is the block that 
will allow us to print information onto the serial monitor. This block is the serial println block 
found in the communications tab; 

 
What this block does is print a message to the serial monitor like I mentioned earlier. In this 
case, because I did not change the message from its default it will simply print the word 
‘message’.  
 
Lastly, there is an additional block from the communications tab that we need. It is the glue 
block; 

 
Note that this is the glue block with pointed corners rather than the rounded glue block. The glue 
block lets us glue a value to our message, such as a variable, and print it along with our 
message. I’m sure that you see where this is going. 
 
​ Below is the full code that we will be using; 

32 



 

 

 
Notice that I have my variable’s value set to analog pin 0, the pin we wired to our potentiometer. 
Now rather than having a variable that is one single value, we have a variable with a changing 
value. It changes as the voltage to pin A0 changes, which happens as we turn the dial on our 
potentiometer.  
I have changed the name of my variable to ‘raw’ as the date we are going to receive is 
completely raw, we have not doctored or analyzed it at all.  
In the serial println block I’ve just thrown the message away and simply glued the ‘raw’ variable 
value to that block, so the only thing being printed is the value of raw. 
Lastly I put a half second delay at the end of the code to avoid printing raw values too rapidly. 
 
​ Upload this code to your robot and open the serial monitor, what do you see? As you 
turn the dial on the potentiometer what do you see? You should see a number between 0 and 
1023 that fluctuates as the dial is turned. 
 
​ That number, as I explained before, represents some voltage between 0V (GND) and 
5V. I want to be able to read the exact voltage being supplied from the serial monitor directly, not 
have to do math to figure out what each number I see means. Luckily your computer and robot 
are incredibly good at math, well sort of. They can only do math that you teach them, but they 
can do it incredibly fast. So we need to understand the math first so we can teach our robot. 
 
​ We know that the voltage we are getting is being split into 1023 equal parts, meaning 
that if the serial monitor reads 1 we are getting 1/1023 of the 5V. If it reads 1023 we are getting 
all of the 5V. So the voltage for any number the serial monitor can give us is; 
 

(raw)/1023 x 5V = voltage 
 

We just need to teach our robot this formula. To do this I need to teach you more of the blocks in 
Ardublock. This time we will delve into the math operators tab to find the mathematical 
operations I am sure you are familiar with: multiplication, division, addition, subtraction and 
some you are not so familiar with. You can see that each operation has room for two values to fit 
inside. Furthermore you can fit another operation inside of a first. Because we need to do 
division then multiplication we will use this little trick. We are also going to write another variable 
called voltage, which will be the actual 0-5 voltage at that point in the circuit; 

33 



 

 

 
I’ve only added a few things to our previous program. First I have created the voltage variable, 
which you’ll notice is a different type of variable. It is a decimal variable. I did this because I want 
to be able to read values like 4.5V or 2.52V, not just 0, 1, 2, 3, 4, 5. The set decimal number 
variable block can be found inside the variables/constants tab. The value of the voltage variable 
looks a little wonky. I started with a multiplication operator and put a division operator inside that. 
Inside the division operator I have the variable raw divided by 1023 and that result is being 
multiplied by 5, just like in the formula. I am using a message this time just to make what’s 
printed clear, and I’ve glued the voltage variable to that message.  
 
So upload this, turn on the serial monitor and see what happens as you move turn the dial. 
……. So, how’d that go? I’m guessing not too well. You likely only saw the values of 0.00V and 
5.00V, what happened? I’ll tell you what happened, we were not careful enough with our number 
types. We correctly called voltage a decimal number, but look at what we defined voltage to be. 
It’s an integer divided by an integer multiplied by another integer. So the outcome is, you 
guessed it, an integer. There is one small easy change needed to make this work; 

 
Can you see what I have changed? I changed the number type of 1023 to a decimal number 
(also found in the variables/constants tab). Beforehand, no matter what the value of raw was the 
outcome of raw/1023 was always either 1 or 0 because it was not allowed to be anything other 
than an integer. Now that 1023 is considered a decimal number (even though it doesn’t have 
any decimals in it) the result of raw/1023 is allowed to be a decimal number. This is a good 
example of why keeping track of data types is so important. I generally write everything in terms 

34 



 

 

of decimal numbers to keep me out of trouble, although that is not always reasonable or even 
possible. 
 

Arduino: 
 
​ Getting our robot to print to the serial monitor in the C based Arduino in actually not very 
difficult. For starter there are no variables to define previous to the void setup, so let’s jump right 
into the void setup; 
 
void setup() { 
​ pinMode(A0,INPUT); 
​ Serial.begin(9600); 
} 
 
It’s a pretty short and sweet void setup. The pin we have set as an input, A0, is a special pin on 
the Arduino. It is capable of reading voltage very accurately, which is why we are using it in our 
current circuit.  We want this pin set as an input so that we can read the voltage at the midpoint 
of the circuit as we manipulate the potentiometer. The next line, Serial.begin(9600);, simply 
starts the serial monitor so that we have something to print our data to, and the 9600 is just 
referring to the rate of data capture (the maximum speed that the robot can print to the serial 
monitor).  
 
Let’s jump to the void loop now; 
 
void loop() { 
 
We need to create a variable that holds the value of pin A0, so that we can print that value to the 
serial monitor. 
 
​ int raw = analogRead(A0); 
 
notice that I specified that the variable, which I named raw, as an integer. 
I then set that variable to the value being read from pin A0 at that point in time. 
 
I then want to give the actual order to print that value to the serial monitor. 
 

Serial.println(raw); 
 
there are two print orders: .print and .println. .println will end the line so that anything printed 
after that will be printed on a new line. 

35 



 

 

 
​ delay(500); 
} 
 
The delay block is just there to slow the rate of numbers being printed 
 
Here is how the final code should look; 

 
 
Now upload this code to your robot and turn on the serial monitor, which is located in the tools 
tab in the Arduino window. What do you see? How about when you turn the dial on the 
potentiometer? You should see a number between 0 and 1023 that changes as the dial is 
turned. 
 
That’s great, but I know that number corresponds to a voltage, and I would really like my robot 
to just tell me what that voltage is. In order to do that we’re going to have to teach our robots 
some math. You can probably guess that the number 0 refers to GND, or 0V, and 1023 refers to 
5V. So what does the number 1 refer to? It refers to a voltage that is 1/1023 of the maximum 5V. 
So if I want to know the voltage that any raw number refers to I would use the following 
equation; 
 

(raw)/1023 x 5V = Voltage 
 

So our code will look very similar to our previous code up to a point; 
 
void setup() { 
​ pinMode(A0,INPUT); 
​ Serial.begin(9600); 
} 
 

36 



 

 

void loop() { 
​ int raw = analogRead(A0); 
 
Up to this point our code is identical to what we have already done but that’s about to change. 
I’m going to introduce a new variable and a new data type in the next line; 
 
​ float voltage = (raw/1023)*5; 
 
I first want you to notice that this new variable ‘voltage’ makes use of the math we figured out 
earlier to define its value. second , I put the word float in front of voltage to tell the computer and 
robot what kind of number voltage can be. A floating point number can have decimal places, 
and since I would like to read exact voltage values like 2.52V or 4.50V I have chosen to make 
voltage that kind of number. Now I am going to add a couple print statements; 
 
​ Serial.print(“Voltage = “); 
​ Serial.println(voltage); 
​ delay(500); 
} 
 
The first print statement is just so that I can label my data. Notice that it is only a .print not a 
.println so everything will be printed on one line before moving on to the next line, like so; 
Voltage = some number (whatever the voltage happens to be at that time). Here is an example 
of the final code; 

 
 
Now upload this into your robot, turn on the serial monitor and turn the dial on the potentiometer. 
What happens? Well unfortunately you are probably only seeing Voltage = 0.00 or Voltage = 
5.00. So something went wrong. 
 
The problem was in this line; 

37 



 

 

 
Float voltage = (raw/1023)*5; 
 
I correctly defined voltage as a float, and I know that is working correctly because the numbers 
in the serial monitor are displayed with decimals. The problem is when I divide raw by 1023. 
Remember that the computer and robot view both of those numbers as integers, and although 
we know that you can divide two integers and get a decimal number the computer sees 
integer/integer and says ...well that’s obviously an integer. So the computer insists that raw/1023 
is either 1 or 0, and since that number is being multiplied by 5 the only outcomes we can get are 
5.00 and 0.00. So we need to change either raw or 1023 to a float. I chose to change 1023 to a 
float like so; raw/(float)1023. Just by putting the word float next to 1023 the computer will now 
recognize 1023 as a float. If you choose instead to change raw you must make sure to define it 
as a float to begin with rather than an integer; 
 
​ float raw = analogRead(A0); 
 
Here is my version of the finished code; 

 
​ Now uploading this code and manipulating the potentiometer dial should provide the 
results expected. 
 
Further Discussion: 
 

1)​ What are some applications there might be for a potentiometer? One fairly 
common application is in light dimmers. As we saw early in the lesson the 
potentiometer can be used to dim or brighten a light conveniently, and you can 
imagine if your house has a dimmer that there is likely some similarities between 
its circuit and what we have done here today. 

2)​ We ran into some trouble today. Our robot was not giving us the information we 
wanted it to give us. We had to troubleshoot the problem, as we often will 
throughout this course. We first looked at the code, the software, when 
attempting to fix the issue. This is often what engineers will do when they run into 

38 



 

 

a problem. The software problems are generally easier to fix as they don’t involve 
rebuilding or rewiring anything so if the code should always be explored in more 
detail first when there is an issue. 

3)​ The strange number 1023 came up many times in this lesson. Why is that? 
Remember me telling you that the pin A0 can read things very accurately. There 
is actually a name for the amount of accuracy it has, called 10 bit precision. The 
non analog pins on the Arduino have only 8 bits of precision. So what do bits of 
precision mean? We can start answering that question by asking another, what is 
a bit? A bit is the smallest unit of information that a computer or microcontroller 
can store. A bit is a location that holds a number, and that number can only be 1 
or 0. So a pin capable of only one bit of precision is only capable of seeing two 
modes, such as high and low which we are familiar with (all of the Arduino pins 
are capable of at least 8 bit precision, even if we don’t use all of that precision). 
An 8 bit number has eight locations instead of 1. Hopefully this puts a good 
picture in your head; 

_ _ _ _ _ _ _ _ 
 

Each of those spaces can be either 1 or 0. So all together how many numbers can be 
expressed by an eight digit binary number? Well each digit is capable of only 2 different 
numbers itself so; 

2x2x2x2x2x2x2x2=256 
 

So instead of high and low I can cut 0V and 5V into 255 evenly spaced segments and each 
number can be related back to an appropriate voltage. I say 255 because zero is included in the 
256 numbers that I can have, so 0-255 is 256 numbers. Just out of curiosity, how accurate is 8 
bits of precision? Let’s see; 
 

(1/255) x 5V = .02V 
 

So every time you jump a number you jump .02 volts up or down. That is pretty accurate, but I 
imagine 10 bit precision will be far more accurate; 
 

(1/1023) x 5V = .005V 
 

10 bit precision is four times as accurate! This makes alot of sense when we look at the 
numbers associated with 8 and 10 bit: 256 and 1024(remember 0-1023 is 1024 numbers). One 
is 4 times bigger than the other, allowing it to cut 0V to 5V into four times as many segments, 
quadrupling the accuracy. 

39 



 

 

Week 4 

The Photoresistor 
 

 
​ In this section we will be focusing on a particular component known as a photoresistor or 
light dependent resistor (LDR). This resistor is another variable resistor, and it varies depending 
on, you guessed it, how much light it receives. The photoresistor has a relatively small 
resistance when it is bright and and a relatively large resistance when it is dark. 
 
​ Because of how the photoresistor functions we can utilize it in a voltage divider to create 
a signal that varies dependent on some outside stimulus, much like the potentiometer. However, 
unlike the potentiometer, the photoresistor does not need us to be the stimulus. The 
environment around your robot will be the stimulus. 
 
​ Let’s begin by asking the students to create the following circuit; 

 

40 



 

 

As always, allow the students to attempt building the schematic on their own before giving them 
access to the finished wiring diagram provided below; 

 
Test this circuit out! Cover the photoresistor with your hand and see if the behavior of the LED 
changes. Perhaps going into a room with no windows and turning the lights on and off may be 
more impactful, or conversely find an area of bright light. What you should see is that in dark 
areas the LED turns off and in bright areas the LED turns on. So we can clearly see the 
photoresistor at work, but it doesn’t seem very useful, at least not in the way we’re using it. It 
would be nice if the LED turned on in the dark when we need it, and off in bright light when we 
don’t need it, rather than the other way around. 
 
​ We’re going to need to alter our circuit to accomplish this; 

41 



 

 

 
And the corresponding circuit diagram; 

 
​ Before we get into the programming section of this lesson let’s try to think critically about 
the behavior of this circuit. Remember that the stimulus we want to detect is darkness. When it 
is dark, the photoresistor has a very high resistance. Because the photoresistor is located at the 
top of the circuit, which acts like a voltage divider, it decides how much voltage is allowed 
through the top of the circuit is decided by the resistance of the photoresistor. So when it is dark 
and the resistance of the photoresistor is high, most of the voltage is dropped across the 
photoresistor. That means that when we try to read the voltage with the A0 pin we should only 

42 



 

 

see a small amount of voltage. That will be our cue to turn on the LED, if the voltage 
measurement is small enough. 
 
​ However, this begs the question, what is ‘small enough’? Doesn’t everyone have their 
own preferences about how dark is too dark? I want each student to make the decision for 
themselves how dark the area has to be before the LED lights up. So our task is no two fold: 
 

1.​ Find that magic number that gives us the desired darkness before turning on the LED. 
2.​ Code our robot to do just that. 

 

Ardublock: 
 
​ Ok, Let’s start with number one on our to do list. What we need to do is create a program 
that utilizes the serial monitor to tell us what number is associated with the appropriate level of 
darkness. We will end up making an identical code to part of last week’s lesson; 

 
A good question to pose to the class would be ‘why is it appropriate to use this piece of code 
that we used last week even though the circuits are different?’ We didn’t have a photoresistor 
last week. We weren’t concerned about light levels. So why is our code the same? 
 
The key to answering that question is to note that while the circuits are different, they have one 
very important similarity. They are both voltage dividers. Both last week’s circuit and this week’s 
circuit divide voltage by some form of varying resistor and attempt to read the remaining 
voltage.  
 
So upload this code into your robot, turn on the serial monitor, and read the values being shown. 
Note that they change if you cover the photoresistor with your hand. Have your students take 
their robots, while still attached to the computer via usb to an area they deem appropriately 
dark. Keep in mind that the computer screen should not be pointed towards the robot and in 
particular the photoresistor. Each student should now have a value on the serial monitor that 
relates back to the level of darkness needed to turn the LED on. Step 1 complete. 

43 



 

 

 
Now we need to use the information we just gained to accomplish the task we set out to 

do. I want to remind you of the first week’s task. Remember that in week one we used a button 
to tell our robot what to do. Our current task is similar to that one in that we need to use a 
condition in our code to determine when our robot acts. That means making use of the if/else 
block in the controls tab again and one of the test blocks as well. Let’s get started; 

 
​ As always I first need to include a loop do or my code will not run or even upload. Next I 
placed a if/else block inside of my loop do because I need the robot to do two specific things 
dependent on a particular circumstance: turn the light off if it is bright, turn the light on if it is 
dark. So which test block will we use? I intend to use the less than test block because I want to 
turn on the LED for any level of darkness OR darker. Remember that the darker the area the 
lower the lower the reading from pin A0 will be. Inside that test block I want to include an analog 
pin block which must be less than the number we found earlier, like so; 

 
​ I chose the number 200 as my ‘preferred darkness’. You may have something different, 
and that’s fine. Next we need to fill the then/else portions of the block. I want the LED on if the 
value read by the analog pin is low enough, else I want the LED off; 

 
​ Note that I have completely done away with the variable assignment that I had in the 
previous code. That is just personal preference. It just feels clumsy in the current situation. 

44 



 

 

 

Arduino: 
 
​ We will start by getting our serial monitor to display a value that corresponds to the 
resistance of the photoresistor. To do this we will actually use code identical to code used in an 
exercise done last week; 

 
Why would we be using code identical to what we did last week? 
 
The answer is that each circuit, this week’s and last week’s, are both voltage dividers. Not only 
that, but they are both voltage dividers that use a variable resistor, although the type of variable 
resistor differs. Finally, in both cases we are attempting to read the voltage at the same point in 
the circuit. 
 
​ Now upload this code into your robot and turn on the serial monitor. Now have the 
students take their robots to a place they think is sufficiently dark to need a light with the robot 
still attached to the computer. Have them read the number on the serial monitor with the 
computer screen pointed away from the robot. That number will be important in the upcoming 
code. 
 
​ Now that we have a number associated with a particular level of darkness we can use 
that knowledge to turn on our robot’s LED at the appropriate time. Let’s get started; 
 
I’ll begin with a slightly different void setup that we had previously, removing the Serial.begin 
statement and adding a pinmode for the LED; 
 
int LED = 7; 
void setup() { 
​ pinMode(A0,INPUT); 

45 



 

 

​ pinMode(LED,OUTPUT); 
} 
 
The void loop is going to have some new functions that we haven’t used before. We need to use 
what is called ‘conditional logic’. We want the LED to turn on only if it is dark enough, so we 
need our code to essentially say; 
 
If it’s dark->turn on LED 
If it’s bright->turn off LED 
 
With this in mind let’s get started; 
 
void loop() { 
​ int raw = analogRead(A0); 
​ If(raw<200) { 
​ ​ digitalWrite(LED,HIGH); 
​ } 
​ else{ 
​ ​ digitalWrite(LED,LOW); 
​ } 
} 
 
Here is a finished version of the code; 

 
The if and else statements are the conditional logic we talked about earlier. Notice the condition 
inside the if statement raw<200. Remember that as the area gets darker, the number ‘raw’ gets 
smaller. So the if statement is saying turn on the LED if it is this dark or darker, the else 
statement says if it’s not at least that dark the LED will stay off.  
 

46 



 

 

I also want to emphasize the use of the bracket symbols {}, we’re using many of them here. 
These symbols group actions together and let the computer and robot understand which 
commands go with which conditions. If we look carefully our void loop has brackets within 
bracket to help group the light on/off commands with the if/else logic rather than the void loop at 
large. 
 
​ So try uploading this code and taking the robot into a dark area to see if the code is 
working. If it is, congratulations! You are done. 
 
Troubleshooting: 
 
​ The most common problem to have is the LED not lighting up in dark areas after 
implementing the final code. Remember that the number you placed in the if statement 
represents the threshold darkness needed to turn the LED on. If the LED is not responding to 
what you feel is the appropriate level of darkness consider making that number 10-50 larger. So, 
in my example rather than keeping the number 200 I could change it to about 250 and be much 
more likely to see my code work as intended. 
 
What have we accomplished: 
 
​ We have, in the past, described a robot as having human parts like: a body, a brain, a 
heart, a soul. I want to describe robots differently for just a moment. I want to describe a robot 
as having sensors and actuators. These are just fancy words for inputs (sensors) and outputs 
(actuators). A fully autonomous robot will take information from the world around it using its 
sensors, process what it sees/hears/feels with its brain, then uses it’s actuators to react to what 
it has sensed. This week is the first time we have done this. We are well on our way to 
becoming real robot scientists and it is hard to understate this milestone to your students. 
 
Wasn’t there an easier way? 
 
​ Yes, as a matter of fact there was an easier way to accomplish the task that I just 
praised you for. If you look back to the first circuit we made this week, you’ll remember that it 
had the behavior opposite what we wanted. We wanted the LED to turn on in the dark and off in 
the light. Now if we were to switch the places of the resistors, putting the standard resistor at the 
top of the voltage divider and the photoresistor at the bottom of the circuit, we would have 
inverted the behavior of the circuit.  
 
Why didn’t I just have you perform that task instead? It would have been far easier. There are 
two main reasons I didn’t approach this week’s lesson in that manner: 
 

47 



 

 

1.​ Look at all the things we learned this week. We learned some new methods of coding 
that will be useful to us in the future as well as obtain a level of automation with the 
robots that I described earlier as being an incredibly important milestone. 

2.​ By supplementing our electronics knowledge with our coding knowledge we were able to 
exercise a greater amount of control over what our robot was doing. We were able to tell 
it exactly how dark it needed to be in order for the light to turn on. In general this is true, 
that adding a software engineering aspect to our circuits offers a larger amount of control 
and therefore a larger amount of convenience. 

 
UNIT 3: The Common Cathode Display (CCD) 
 

 
 

Week 5 
 

The common cathode display (CCD) is a component that you are probably familiar with. 
At some point in your life you have seen a digital display of numbers or letters using the object 
in the picture above. This week you’re going to learn how these things work. 
 
​ I first want to explain what the name common cathode display means. A cathode is a 
type of electrode, which is just a conductor that current flows out of or into. For example the pins 
on the brain of our robot are electrodes. A cathode is just an electrode that current specifically 
flows to. There is another kind of electrode called an anode, which current flows from, and there 
is another type of digital display called a common anode display (CAD) which makes use of it. 
 
​ Either of these displays, either the CCD or CAD, is simply several LEDs grouped 
together by one of these electrodes. As a matter of fact I have a picture that illustrates the 
difference between the two; 

48 



 

 

 
Notice that the only thing that is different between the two of them is the direction the LEDs face 
in relation to the electrode. In the common anode display the LEDs are all facing away from the 
anode while in the common cathode display all the LEDs are facing toward the cathode.  
 
​ To better understand why we are using a CCD rather than a CAD we’re going to need to 
familiarize ourselves with the CCD. So let’s just keep the CAD in the back of our minds as we go 
through this lesson. 
 
Understanding Datasheets: 
 
​ With so many complex electronic components out there it’s impossible to know how 
every one of them works. Luckily, any company that makes electronic components will offer 
what are known as data sheets online that you can open and download for free. A datasheet will 
tell you the function of each pin on a component and often tell you the peak operating conditions 
of the component. The CCD we are using is the LDS-C514RI Made by Lumex. You can squint 
and see that listed on the side of the part. Just by googling that you can find the datasheet for 
this part as a PDF, and I encourage you to challenge your students to practice their google fu, it 
may sound silly but it is an important skill. If they still have trouble here is the Datasheet PDF.  
 
At the bottom of the datasheet we are given a system of numbers and letters that are 
associated with each other. Even better there is an illustration of the CCD that shows us which 
part of the display is associated with each letter. Unfortunately there is no illustration that shows 
which pin on the CCD is associated with each number. Luckily, CCD’s are very common and I 
was able to find an illustration that does just that; 

49 

http://www.alliedelec.com/m/d/c45b968fe049054190ddc7a5cfc6ebe6.pdf


 

 

 
The above illustration will greatly assist in understanding how to write legible information to the 
CCD. For example, if I wanted to make the number 7 appear on the CCD I would need the a, b, 
and c segments to light up. Those segments are associated with the 7, 6, and 4 pin of the CCD, 
not of the Arduino. So I would need to write high signals to those pins of the CCD.  
 
​ We need to wire our CCD together. If you’re using a fully wired robot already you are 
probably wondering how we wire all of these to the current Arduino board as things are already 
a bit crowded. There are two answers to this question; 
 

1)​ Use a completely new Arduino and breadboard for this activity. 
2)​ Take all of the wires and components out of your current breadboard and 

Arduino/Noggin so you have the space needed. 
Consider your options, and when you and your students are prepared, attempt to make the 
schematic below; 

 

50 



 

 

The above schematic is a little difficult to understand so I will try to explain. I want to match the 
pin number on the Arduino to the pin on the CCD with the same number. This means, for 
example, that I should wire pin 1 in the Arduino to the bottom left pin in the CCD, as it is also 
labelled pin 1.  
 
As always I will include a finished circuit diagram, however because of how ‘busy’ this circuit is I 
will include a picture of the circuit rather than the usual circuit diagram I have been including. 
 

(Picture of CCD wired to Arduino here) 
 

​ Before moving on to next week’s lesson I propose you attempt the following activity with 
your class; 
 
Using either programming or simply rewiring the circuit as needed, have your class collectively 
try and figure out which segment of the display is related to which pin of the CCD. 
 

Week 6 
 

With the CCD wired we can move on to programming. 
 

Ardublock: 
 
​ Before we start programming the CCD I want to introduce the subroutine blocks; 

51 



 

 

 
The subroutine blocks, as you can see, are found in the controls tab in Ardublock. They consist 
of the commands block and what I will call the run block. The subroutines blocks allow us to 
create longer segments of code that we can call using only one block. I’ll give you an example; 

 
In this program I have created a subroutine 
called Blink, which you probably recognize as 
the code needed to blink the LED. Then, inside 
the loop do I placed several run blink blocks, 
each one of which will do all of the things inside 
of the subroutine command block called Blink. 
So without doing much work I have made my 
robot blink 15 times. 
 
 
 
 
 

You may already be thinking about how this can be useful for the CCD. Displaying a single 
number on the display is itself a process. To display each number multiple LEDs inside the CCD 
must be turned on. Furthermore, the ones that must be turned on are different for each number 
we want to display. In addition, we need to turn off the LEDs in between displaying numbers. 
Having access to subroutines would be very nice for all these things.  
 

52 



 

 

See if your students can use the illustration below to create 10 subroutines, one for each 
number; 

 
I’ll list each of the subroutines here: 

53 



 

 

54 



 

 

55 



 

 

 
One piece of advice I can give is to begin with each pin low and change the pins to high as 
needed for that given number. Keep in mind that you need all of these subroutines to exist in the 
same program at the same time, even though I showed only one at a time. 
 

56 



 

 

With these subroutines we can now easily get the CCD to display whatever numbers I want, in 
whatever order I want, at whatever speed I want. For example the following code will countdown 
from nine in one second intervals; 

 
An additional challenge may be to integrate lessons from former weeks into this lesson. 

This could be done by having the CCD count how many times the button has been pressed, or 
give a number for relative brightness read from the photoresistor. 
 

Arduino: 
 
​ I want to start by introducing what are called functions. A function will allow us to act out 
many commands by only typing one line of code. The caveat is that we must define the function 
before using it, doing some work up front before being able to reap the rewards. For example 
below is code that will make the robot blink, only this time using a function to do so; 

57 



 

 

 
You’ll notice the usual things up through the void setup like naming pins and assigning pin 
modes. However in between the void setup and void loop I have inserted something we are 
unfamiliar with. I have called this thing void Blink(), and this is the function that I am defining. 
Just like LED needs int in front of it to identify what kind of number it is, the function Blink() 
needs void in front of it to identify what kind of function it is. Inside of the void blink you may 
recognize the lines of code that cause our robot to blink. These lines of code in this program do 
not make our robot blink but instead tell the robot that whenever the function Blink() is called to 
do those lines of code. So essentially when I tell the robot Blink() it will run those four lines of 
code which we know will make the robot blink. 
 
Now I could have named that function something else, like void smile or void fly or something 
like that. The name just references those lines of code inside it and will not break if the name 
doesn’t have anything to do with the code. The reason I gave that function the name Blink() is 
because it will be easier to remember what it does than if I name it something else. 
 
​ I would like to make a set of functions for our CCD. If I don’t do so we will have much 
more work to do and our code will be much more disorganized, making it difficult to find errors. 
What makes programming with the CCD so complicated? To answer that question you must 
remember that the CCD is basically 8 LEDs. This means that you must designate 8 pins to be 
high or low to display a given number, and which pins are high and which are low will affect what 
is ultimately displayed.  
 

Let’s take the number zero for starters. Looking at the CCD diagram again; 

58 



 

 

 
I can see that to display the number zero a, b, c, d, e and f must be turned on, while g and DP 
must be off. The lettered segments that must be on correspond to pins 7, 6, 4, 2, 1 and 9 while 
the segments that must be off correspond to pins 10 and 5. With that in mind our function for 
zero would appear like so; 

 
​ Imagine if I wanted to display zero multiple times. Instead of writing out these eight lines 
of code every time, we can just say zero() and the robot will understand. Have your students 
attempt to create functions for the other numbers as well. I will list them below for additional 
guidance if needed; 

59 



 

 

60 



 

 

 
In our excitement let’s not forget to designate our pin modes in the void setup; 

 
Keep in mind that you can define all of your functions before or after the void setup but they 
CANNOT BE DEFINED INSIDE THE VOID SETUP! They also can be defined after the void 
loop but BUT NOT INSIDE IT! 
 

61 



 

 

​ Now that all of our pins are setup and we have defined all of our functions we can finally 
do something with our CCD. I am going to attempt to count down from 9 in one second 
intervals; 

 
Which brings us to the end of the lesson. 
 

An additional challenge may be to integrate lessons from former weeks into this lesson. 
This could be done by having the CCD count how many times the button has been pressed, or 
give a number for relative brightness read from the photoresistor. 
 

Synthesis Project - Night Light with CCD 
The following is an optional synthesis project where you combine the the night light with the 
CCD. 
 
Sample Code:  

●​ Ardublock Code Template for students 
●​ Ardublock Code 
●​ C Code 

 
Video Demo: https://youtu.be/2oYp1DwjNE4 

62 

https://drive.google.com/open?id=1vRqKgeedc39BE1taJmZNi40q6WnMaH8D
https://drive.google.com/open?id=1Xw-bt1X8eEiC6rZXiRU-p5WBmk-TQO6k
https://drive.google.com/open?id=1lMQLPEQLiaj6mGd29YbXbURt0_u1q5ck
https://youtu.be/2oYp1DwjNE4


 

 

 
 
 
UNIT 4: Logic Gates 
 

Week 7 
 
Now that we have some understanding of mosfets e can move on to larger logic 

structures. These logic gates that we will explore are constructed out of mosfets themselves. 
And while we’ll leave how to actually construct logic gates for later we’ll learn how each of them 
works in this lesson. 
 
Before we go any further I want to make it clear that this week’s lesson is far more pen and 
paper, more cognitive, than the last several weeks have been. 
 
​ So what are logic gates? Aside from some mosfets put together. A logic gate is an 
electrical component that takes two distinctly different electrical signals and, based on those, 
output it’s own high or low signal depending on the logic of that particular gate. For example an 
AND logic gate wants both incoming electrical signals to be on. One AND the other, hence its 
name. So if both incoming signals are high, then the outgoing signal is high. However the AND 
gate will not create a outgoing high signal for any other combination of incoming signals. Not if 
one is high but not the other, and not if neither is high. We can actually make a table for the logic 
of the AND gate; 
 

 

Input A Input B Output Q 

low low low 

low high low 

high low low 

high high high 

 
The letters A,B and Q are just convention. You’ll get used to seeing them. I also want to 
familiarize you with the binary version of the above table, which appears thusly; 
 

A B Q 

63 



 

 

0 0 0 

1 0 0 

0 1 0 

1 1 1 

 
Strangely, there is a lot to absorb with this minimalistic table. First is the explanation of the 1s 
and 0s in place of the highs and lows. 0  just replaces low and 1 replaces high, but there’s 
plenty more to talk about.  
 
The 1s and 0s are the only characters in binary, which is in a way the most pure/basic language 
of computers. Those 1s and 0s are only representing high and low signals, that’s it. So think 
about how many 1s and 0s your computer is juggling around in its head. Each and every single 
of of those numbers represents a very real electrical signal that exists in your computer. Every 
time your computer needs to store new information it does so by changing signals in circuits that 
contain logic gates. The very reason that your computer can do logical things is because the 
pieces it is made out of can do logical things! 
 
​ That explanation is somewhat long winded and unnecessary for this week’s lesson, but I 
think it is important to demystify an appliance that we use so regularly. I find that with added 
understanding, no matter how miniscule or trivial the information, so of the fear surrounding the 
object is dissipated. My hope is that with some added insight into how computers tick students 
will be more comfortable jumping into tech related subjects with both feet. 
 
​ Let’s get back on track. The table I presented last has a name. It is known as a truth 
table, and the logic that governs it is known as truth table logic. Now I have shown you the 
truth table for just one type of logic gate thus far but there are more! Take a look; 

64 



 

 

 
​ So understanding all of the information in the above diagram is unnecessary (looking at 
the boolean algebra column), however I particularly like the venn diagram visualization that this 
diagram chooses to use. I want you to focus on being able to relate the visual representation of 
each gate with the TTL or truth table logic associated with it, ultimately that will determine the 
behavior of a circuit using logic gates. 
 
Exercises: 
 
​ Below are a few circuits that use logic gates. The goal of these exercises is for the 
students to create a truth table for each circuit. Video solutions will be provided. 
 
1) 

65 



 

 

 
2) 

 
3) 

 
 
​ Within our hardware kits you should see a small chip. This chip contains within it several 
NOR gates. The first thing you’ll notice when looking at the parts is that the NOR chip doesn’t 
look anything like the NOR gates looked in the circuit diagram. That’s not particularly surprising, 
after all a real resistor isn’t just some squiggly lines, is it? The NOR chip is a bit more complex 
though, as there are 14 different pins on it. How are we going to be able to tell which pins are 
the inputs and which is the output? And why does the IC have 14 pins? 
 
Well the NOR chip actually contains within it several individual NOR gates. The one we are 
using contains four as shown below; 

66 



 

 

 
 
As you can see, this single chip contains four NOR gates, or at least that is what is suggested 
by the illustration. However, rather than just take my word for it, I would like the students to 
verify that this is fact the case by confirming the TTL for a NOR gate. 
 
​ To do this I would instead recommend walking them through the wiring process, 
beginning with understanding the placement of the chip on the breadboard; 

 
You can see that I’ve labelled the rows of the breadboard where the chip is sitting 1-14. Notice 
that the small notch of the chip is at the top in this picture. This is important as it is telling me 
that those top rows are the 1 and 8 pins on the chip. Also looking at the drawn illustration of the 
chip above We can pinpoint where each individual NOR gate is located. So 1, 2, and 3 are one 
NOR gate. 4, 5, and 6 are another. 8, 9, and 10 are yet another. 11, 12, and 13 are the last. The 

67 



 

 

obvious oddballs are pins 7 and 14, as they don’t belong to any of the NOR gates in the chip. 
These pins are needed to power the chip, with pin 7 being attached to ground and pin 14 being 
attached to 5V. This is similar to the CCD. If you’ll remember the CCD needed to be connected 
to power and ground in addition to having the other pins attached to programmable pins. The 
same is true for this chip we are using now, so as far as wiring this circuit together that is a good 
place to start; 

 
We only need to verify one of the gates is NOR, from there I think it is safe to assume that the 
others are identical. So we must wire the two inputs of one gate to two programmable pins on 
the Arduino, as well s put an LED on the output of that gate so we can see whether it’s on or off; 

68 



 

 

 
 

​ Now we just need to assign pins 6 and 7 to be HIGH and LOW to verify the TTL of the 
NOR gate from a couple of pages ago; 
 

 

Pin 6 Pin 7 LED 

LOW LOW ? 

HIGH LOW ? 

LOW HIGH ? 

HIGH HIGH ? 

 
What behavior do you see? Is it what you expect? 
 

Week 8 

The SR Latch 
 

69 



 

 

​ For our last lesson I wanted to take what we’ve learned in the last few weeks of this 
class and use that knowledge to help us understand what I think is a really cool and important 
circuit. This circuit is the SR latch. 
 
This circuit is awesome for reasons I’m going to keep to myself for now, so you’re just going to 
have to trust me. Before we get to that I should probably introduce the actual circuit, so here it 
is; 

 
 

We have not only the circuit, which does look a bit weird, but the truth table as well, 
which also looks a little weird.  

 
Why don’t we start with the circuit. You can see the circuit is made of two NOR gates 

that are tied together in a peculiar way. By that I mean that what comes out of one is fed back 
into the other. This leads to this very weird chicken or the egg scenario where the output of one 
affects the output of the other, which affects the output of the first, which then affects the output 
of the other and oh no I’ve gone cross eyed.  

 
The second thing to notice about the circuit is that it has two outputs. Normally we only consider 
one of the outputs but there are circuits that are built around this one that make use of both 
halves of the circuit. We’re not going to use both halves at the same time but do notice that the 
circuit is symmetrical, so whatever stuff we’re doing can be replicated on the mirrored half of the 
circuit. 
 
​ So with all that said about the circuit, let’s talk about the truth table, which should help us 
understand how the circuit actually functions. The last three rows look pedestrian enough. 1s 
and 0s, we understand what those do, what they mean. It’s the first row that gives us trouble. 
Instead of just telling us what we get when both S and R are low, it just says latch | latch. That’s 
not very helpful 
 
So I think it’s finally time to reveal the big secret of the SR latch. The SR latch is a circuit that 
can remember. If you set S to 1 and R to 0 then set S to 0, the circuit remembers that S was at 
some point on and will keep Q high and Q bar (as I will now call it) low. Latch | latch simply 
means keep the last thing Q and Q bar were doing before S and R were both 0.  

70 



 

 

 
It goes a bit deeper than this. You’re probably wondering at this point why the inputs are called 
S and R. Well S is often referred to as Set, and R is usually referred to as Reset. If you have 
turned on S at any time in the past Q will remember and stay on. S sets the memory. R will wipe 
Q, give it the value of 0 again. R resets the memory. Don’t forget what I said earlier though, this 
circuit is symmetric. So S not only sets Q but resets Q bar, and R not only resets Q but sets Q 
bar. 
 
​ I don’t want us to get lost in the technicalities of this circuit. Ultimately what it does is 
both very easy to understand and very powerful. It remembers. This circuit is the most basic 
memory circuit. Without it we would not have computers and many of our other everyday 
appliances. This circuit can store either a 1 or a 0, a single bit of memory, the smallest amount 
possible. 
 
How many of these do you think your computer needs to remember all of the things it does? 
Well let’s use my computer as an example. My laptop has 8 gigabytes of RAM. A gigabyte is 
one billion bytes, so I have 8 billion bytes of memory available for use. But how big is a byte? A 
byte is made of 8 bits, 8 SR latches. So my computer needs to contain 64 billion SR latches. 
 
​  
​ So let’s attempt to create one of these circuits ourselves. Once again, let’s begin with the 
placement of the chip on the breadboard; 

 
 
 

​ And we will always need to connect both power and ground. 

71 



 

 

 
​ Next we need to decide which two NOR gates we are going to use. I’m going to use the 
1,2,3 and 11,12,13 gates in the following illustrations. I’m going to start by attaching two inputs 
to buttons, one from each gate; 

72 



 

 

 
​ Notice that I’ve tried to keep things simple by connecting pin 2 and 12 on the arduino to 
the rows labelled 2 and 12. 
 
​ Next we should wire up the buttons so they are functioning. Unlike in the past, when the 
default state of the button was HIGH, we need to wire our buttons this time so that the default 
state is LOW. This means we will wire a pull down resistor rather than a pull up resistor; 

73 



 

 

 
 
Lastly we have to tie the outputs and inputs of the two gates together and add the LEDs to the 
circuit; 

 

74 



 

 

​ In this configuration one button is acting as the set pin for one of the LEDs, but the reset 
pin for the other. So pressing one button will turn one LED on and the other off. However 
releasing the button will not cause the LEDs to revert back to their previous state, as the circuit 
is doing its job of remembering that it was on in the past. If you want to turn that LED off you will 
need to press the ‘reset’ button to get the desired effect. Remember that doing so will turn the 
other LED back on. The two LEDs are coupled at this point, and one cannot be effected without 
affecting the other. 
 
​ So we have built an SR latch, what can we do with it? Aside from being the basic 
building block of your computer, the logic inherent in the circuitry allows us to create some 
interesting things with this circuit, if we are clever enough. I’m going to utilize the RGB LED that 
we learned about much earlier in the class to create a simple stop light system for a four way 
intersection. All I’m going to do is replace the LEDs currently in the circuit and replace them with 
RGBs. I am going to connect both the green and red pins of the LEDs to the circuit, essentially 
putting four LEDs in the circuit. I’m also going to wire them in a way that ensures they always 
have the opposite behavior; 

 
I want to point out that each NOR gate output is wired to different colors on the two LEDs. So 
pin one of the IC is wired to the green pin on one LED and the red pin on the other. Pin 13 of the 
IC is wired to the red and green pins left. Don’t worry if it’s not immediately obvious which pins 
of the LEDs need to be wired to the mentioned IC pins. This is a good opportunity to 

75 



 

 

experiment, as long as it is well understood which pin is GND the correct colors can be found 
through trial and error. 
 
Mosfets 

 
 

Mosfets are a type of electrical component called transistors. In all honesty, the solid 
state physics of how these things are able to do the things they do are a little beyond the scope 
of this class. We will however, be able to understand how they function in circuits by the end of 
this lesson. This opens the door to so many things in electrical engineering because mosfets 
allow circuits to perform basic logic. It is because of these components that our computers are 
able to “think”. 

 
​ I want you to think back to our lesson about the button. The button had two leads, and 
current would flow through one to the other. It would only do so however, if the button was 
pressed. Imagine that instead of using our finger to allow current to pass we gave the button a 
third lead, and let an electrical signal ‘press’ a similar ‘button’ that lies inside the component. If 
you did did that, you would have a mosfet.  
 
A mosfet will let current pass through the outer two leads only if the inner lead receives the 
correct signal, either high or low depending on the type of mosfet. Mosfets are split into 
P-channel and N-channel mosfets. P- channel mosfets will allow current to flow while the middle 
lead (known as the gate) is at low voltage, while N-channel mosfets will only allow current to 
flow if the gate is at high voltage. It turns out the middle lead is not the only lead with a name. In 
fact all of the leads of mosfets have names. Here is a schematic illustration to show you; 

76 



 

 

 
As you can see both the P-channel and N-channel mosfets have the same naming conventions, 
so you won’t have to memorize different names for each. However the direction current flows is 
not the same between the two. Hopefully the illustration below can help us understand more 
thoroughly; 

 
The first thing I want to address about the above illustration is the G=1 and G=0 segments. 
Those are just referring to the gate having a high voltage (G=1) or the gate having a low voltage 
(G=0). This picture kindly shows us when each type of mosfet is on and off with respect to the 
gate voltage. You’ll also notice that current is not flowing in the same direction for both types of 
mosfet. The N-channel mosfet has current flowing from the drain to the source while the 
P-channel mosfet has current flowing from the source to the drain. 
 
​ Now comes the challenge. Each of your students have been given four mosfets. Their 
assignment is to figure out which ar N-channel and which are P-channel, as well as which leg is 
the drain and which is the source (it is already assumed the middle leg is the gate). Along with 
those instructions you should give them this testing circuit schematic; 

77 



 

 

 
As always, here is a complementary illustration of the built circuit; 

 
You’ll notice that this circuit contains a P-channel mosfet, but you will not necessarily know 
which kind of mosfet you have in the circuit at first. 
 
You can also see that the gate of the mosfet is being controlled by pin 2 of the Arduino. This is 
just for convenience so that I can change the the gate from high to low without changing the 
circuit. At this point I assume that setting a single pin to high or low in Arduino or Ardublock is a 
trivial exercise so I will not go into detail on how to do so here.  
 

78 



 

 

Some tips for identifying the mosfets: 
●​ Use this picture; 

 
●​ If the LED is not lighting up consider switching the orientation of the mosfet on the 

breadboard so that the gate lies in the same place but the outer two legs change places. 
●​ If the LED is still not lighting up change the state of pin 2, either from low to high, or from 

high to low. Just the opposite of what is was originally. 
●​ If it’s still not working switch the orientation of the mosfet again, back to its original 

position. 
 
The most important thing is to note the state of pin 2 when the LED finally turns on. If it is LOW, 
we know that it is a P-channel mosfet. If it is high, we know that it is a N-channel mosfet. 
 
After that we need to decide which leg is the source and which is the drain. Once again I must 
refer to the above illustration to figure this out. If I have already found that it is a N-channel, then 
I know that the leg attached to 5V is the drain, do to how current is flowing in the illustration 
(look at the arrow). In the P-channel mosfet, it’s the opposite. The 5V leg is the source in that 
case. 
 
This brings us to the end of this week’s lesson. 
 
Continued Mosfets and Logic Gates 
 

We now have some working knowledge of mosfets as well as logic gates, but you’ll 
notice that we have yet to touch a logic gate. Today we are going to try to remedy this by 
creating our own logic gate. 

 
The reason for having the last two lessons back to back is that logic gates and mosfets are 
closely related to one another.Mosfets are in fact the building blocks that make up logic gates. 
Several mosfets are put into a circuit together in some way to mimic the truth table logic of a 
particular logic gate. 
 

79 



 

 

I want to create a NAND gate as today’s lesson. As we learned during last weeks exercises 
NAND gates can make up any other logic gate if arrayed correctly. So, by learning how to make 
a NAND gate from mosfets we can then construct any logic gate we want from mosfet building 
blocks. 
 
The general schematic for a NAND gate looks like this; 

 
You can see where our two inputs A and B are as well as the output Q. Don’t worry too much 
about the schematic representation of the mosfets, just remember that one pin acts like a 
switch, turning the mosfet on or off, and the two others are connected when the channel is on, 
allowing current to flow through the mosfet. 
 
We are going to add an LED to this circuit as well as connect it to an Arduino so that we have 
control over the two inputs as well as verify that the logic of whatever we have made here does 
in fact match a NAND gate. We can do that by altering the schematic thusly; 

80 



 

 

 
As always I recommend letting your students attempt to construct this circuit straight from this 
schematic before showing the breadboard illustration. That being said constructing this circuit 
from the schematic is no easy task, although not impossible either. The key would be 
remembering which pins on the mosfet are the gate, drain, and source respectively. Of course 
the breadboard view is provided below for clarity; 

81 



 

 

 
Using this circuit I want the students to verify that this is in fact a NAND gate. How are we going 
to do that? Let’s think for a minute. What do we know about NAND gates? Well the only thing 
we really know about NAND gates is their truth table logic; 

 

A B Q 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 
The only way we can compare our circuit to a standard NAND gate is to test it and see if it’s 
truth table is the same as a NAND gate’s truth table. You will assign pins 1 and 2 the values of 
high and low (which relate to the values of 1 and 0 in the table above) in a few different 
sequences and see if each sequence turns the LED on or off (which also relate to the values of 
1 and 0 in the table above).  
 
Start by giving the students the table below; 

82 



 

 

 

Pin 1 Pin 2 LED 

LOW LOW ? 

HIGH LOW ? 

LOW HIGH ? 

HIGH HIGH ? 

 
All that the students need to do is check if the LED is on or off in each case. Afterwards 

they will refer back to the previous table and compare the Q column to the LED column. The 
ons should match up with the 1s and the offs should match up with the 0s. 
 
To accomplish this the students need to set both pin 1 and pin 2 to their correct states (either 
HIGH or LOW) by using two set digital pin blocks or set digital pin commands. That is all that is 
needed. So the students will set both pins LOW, check the state of the LED, then set one HIGH 
and the other LOW, check the state of the LED, and so on through each row of the table. 
 
​ When the students have confirmed that this is in fact a NAND gate tell them to switch the 
places of the N-channel and P-channel mosfets in their circuits. Then have them attempt to 
make a truth table for this new circuit and challenge them to figure out what kind of logic gate 
this circuit is. (It should make an or gate) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

83 



 

 

Appendix 
 

RGB LED Resources 

 
 

 
 
 

DC Motor Activity 
 
Materials needed 

1.​ 130 Sized DC Motor with flying leads.  Make sure that they are able to be plugged into a 
breadboard 

2.​ PN2222 Transistor 

84 



 

 

3.​ 1N4001 diode 
4.​ 270 Ω Resistor (red, purple, brown stripes) 

 
NPN Transistor Pin out 
 

​ 
 
 
Schematic View 
 

 
 

85 



 

 

Breadboard View (from Adafruit) 
 

 
 

 
 

86 


	BarnabasRobotics-Logo-03_Logo+Text+Motto-Horiz 
	Materials 
	 

	Forward 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	UNIT 1: The Button 
	Week 1​ 
	Week 2 
	Ardublock: 
	Arduino: 

	The RGB LED 
	Ardublock: 
	Arduino: 


	 
	UNIT 2: Voltage Dividers & Their Applications 
	 
	Week 3 
	The Voltage Divider 
	The Potentiometer 
	Ardublock: 
	Arduino: 


	Week 4 
	The Photoresistor 
	Ardublock: 
	Arduino: 



	UNIT 3: The Common Cathode Display (CCD) 
	Week 5 
	Week 6 
	Ardublock: 
	Arduino: 

	Synthesis Project - Night Light with CCD 

	 
	UNIT 4: Logic Gates 
	Week 7 
	Week 8 
	The SR Latch 


	Mosfets 
	Continued Mosfets and Logic Gates 
	Appendix 
	RGB LED Resources 
	DC Motor Activity 


