Enabling Julia to target GPGPUs using
Polly

Student Information

Name: Singapuram Sanjay Srivallabh

E-Mail: singapuram.sanjay@gmail.com

University: Birla Institute of Technology and Science - Pilani, Hyderabad Campus, India
Major: Bachelor of Computer Science and Engineering.

Introduction

Polly

Polly is an analysis and optimization framework' for LLVM that uses polyhedral compilation
techniques to optimize programs. It extracts information from LLVM-IR produced by
language front-ends and analyses them for possible parallelism and data-locality
optimizations using the polyhedral model. It can then generate parallelized CPU code or
even GPU code, thus automating the offloading process. This improves developer
productivity and helps target upcoming architectures without requiring developers to learn to
program them. Polly is able to speed up compute kernels significantly™, especially in the
context of dense linear algebra and iterative stencil computations.

Polly-ACC

Polly-ACCE is an alternative datapath for LLVM-IR within Polly, for optimizing IR meant for
GPUs. It interfaces with ppcg, a standalone transpiler that converts C/C++ code into CUDA
or OpenCL code, and uses its optimization strategies for GPU code. The CPU specific
passes like IsIScheduleOptimizerPass and CodeGenerationPass are dropped in favour of
the PPCGCodeGenerationPass.

The @polly macro

Polly? currently interfaces with Julia by optimizing Julia functions annotated with the @polly
macro. This was a part of the work done by Matthias Reisinger in his GSoC 2016 project
titled “Enabling Polyhedral Optimizations in Julia™ &

! Polly is a sequence of individual passes, each which is meant to analyse or transform the IR or inform the user about the IR.
2 “Polly” might be interchangeably used with Polly-ACC in a context not discussing GPU-specific topics.

mailto:singapuram.sanjay@gmail.com
https://www.researchgate.net/publication/256121128_Polyhedral_Parallel_Code_Generation_for_CUDA

Julia + Polly-ACC: Proof of Concept and
Motivating Benchmark

I have made initial progress in integrating Polly-ACC into Julia, which can be found here (as
partial diffs and benchmark results). These changes include code to handle LLVM-IR
generated by a debug build of Julia and also ensures certain runtime libraries are linked.

Benchmarks

The Julia gemm kernel defined in PolyBench.jl was benchmarked with and without
Polly-ACC enabled, and Julia specific optimizations enabled when Polly-ACC wasn'’t.
Matrices of sizes 2300 and 11448 were used to compare the speeds of CPU-only and
GPU-only implementations. The benchmark revealed speedups of at least 141x upto 191x.
More information can be found in this Sheet associated with the graph or at the end of this
document.

Speedup for gemm

CPU in sec

g
Hl Time take by
julia+Polly
ACC —~check
bounds=no"

Intel i7-4820kK/ Tesla K20c Intel Xeon ES v6 2620/
GeForce 1070

CPUWGPU systermn configuration

Benefits to the Community

As is evident from the preliminary benchmark results, offloading kernels to GPUs can have
an incredibly positive effect on the runtime, especially for programmers or researchers who
don't want to be burdened by learning yet another programming language. Given that many
people are getting into computational finance and data science and a lot of personal systems
now integrate GPUs, this research can now be accelerated, and is accelerated further in the
future when hardware gets faster and software gets smarter.

https://drive.google.com/drive/folders/0BxMVrKCvRYQDTUtBVmYzU3lvemc?usp=sharing
https://github.com/MatthiasJReisinger/PolyBench.jl/blob/master/src/linear-algebra/blas/gemm.jl
https://docs.google.com/spreadsheets/d/1cqjqcuBzLe0tsMaUBm_1pNseGMoRg2YeawZK2869A24/edit?usp=sharing

Deliverables

This section outlines the core objectives, Must haves, and optional outcomes, Nice to haves,
of this project. I'll be tackling the Nice to haves in case | have time and ‘am done with the
Must haves.

Must haves

Enable polly-acc for all kinds of builds

Use @polly-acc to compile code for the GPU and @polly for the CPU

Enable Julia to send runtime information to Polly-ACC to generate the most suitable
code for the set of run-time parameters.

Nice to haves

e Make Polly default to optimizing for CPU in case GPU cost model suggests a costlier
offload.
e Fix OpenMP code generation of Polly for Julia.

Approach and Implementation Plan

1. Adapting Julia and Polly to include components and
dependences of Polly-ACC

The Julia and Polly codebases have to be modified such that components and
dependencies of Polly-ACC are always included in the build and it functions properly in any
scenario.

Polly inserts calls to runtime functions that handle device-host data transfers and launch
kernels. These are a part of libGPURuntime.so, found in Polly, which has to be linked to
libjulia.so or to libLLVM.so.

Polly-ACC fails to create a GPU kernel whenever the associated LLVM module has
metadata in the form of debug-intrinsic instructions. The local Polly codebase currently
manages it with debug-info stripping functions. | have to find a way that concretely ensures
that debug-intrinsics aren’t included in functions meant for Polly, because even OpenMP
code generation might fail when such instructions are present. This could entail changes in
Julia codebase itself, which would prevent debug intrinsics in functions meant for Polly.

Currently, Julia initializes just the LLVM back-end that targets the native architecture. Since
Polly-ACC uses the NVPTX-backend (or AMDGPU backend) to produce kernel code, even
this backend must be initialized whenever Julia needs to use Polly-ACC. This can be done
inside either Julia or Polly.

2. Introduction of @polly-acec macro

This macro would help indicate functions that are suitable for GPUs. The behaviour would be
similar to that of @polly macro when Julia’s passed "--polly-target=gpu” via
JULIA_LLVM_ARGS. Instead of considering all @pol1ly annotated functions for GPU
offload, GPU suitable functions can be separately considered by @polly-acc. @polly can
then be reserved for functions that'd do better when optimized for CPUs.

This’d require Polly to register 2 different sequence of passes with Julia, one for @polly and
another for Gpolly-acc.

| could have @polly-acc default to @polly’s functionality in case the cost model indicates
that the function isn’t well suited for a GPU offload. This can be done by splitting Polly’s
monolithic GPUCodegenerationPass into an analysis and a transformation pass, and having
the analysis pass right after Polly’s ScopInfo® pass and just before all other transformation
passes.

3. Getting more Julia generated kernels recognized and
optimized

For the @polly-acc macro to be widely applicable, it is important that it is able to recognize
and optimize certain widely used compute kernels which are representative of algorithms
used in compute intensive programs. PolyBench.jl is such a set of kernels for polyhedral
optimizers, especially Polly, written in Julia. | would be working to make Polly recognize and
optimize a subset of these algorithms.

This step would be analyzing the reasons for certain kernels not being optimized by
Polly-ACC. Expanding the Polly’s envelope to these kernels could entail changes to (in
decreasing order of likelihood),

1. Julia LLVM-IR code generation

2. Polly-ACC’s GPU cost model

3. Polly’s SCoP* detection algorithm

4. ppcg’s optimization strategy

The best possible way to capture these changes (not including those for ppcg) would be a
Julia module for Polly. This way, the Julia and Polly codebases can avoid tighter coupling
and remain universal for as many modules or front-ends respectively. | would be building on
the polly.jl module proposed by Matthias Reisinger’s pull request.

3 Polly’s Scoplnfo pass - stores a part of program in representation suitable for polyhedral analysis

4 SCoP - Static Control Part - a portion of the program that can be analyzed and optimized by polyhedral techniques. E.g. for
loops with finite number of iterations and constant iterator update: for(i=0;i<N;i+=C){...}. Such a SCoP has atleast 2 paramaters,
in the form of the loop bound N and update value C.

https://github.com/MatthiasJReisinger/PolyBench.jl
https://github.com/JuliaLang/julia/pull/17965

4. Using run-time parameters to better optimize generated code

This step envisages Polly to be able generate code that best fits a particular class of
problem sizes. For e.g. it might be better off running gemm as OpenMP code, when the
matrices are small, than offloading it to the GPU which would require to store both OpenMP
code and the NVPTX kernel. We could even have different NVPTX implementations of the
same SCoP which ppcg can generate based the information it has about variables in the
code (which include loop bounds). As a start we could consider those SCoPs which have
small number of parameters

There are 2 challenges to this step,
1. I have to find a cost effective way to associate a function’s runtime parameters to a
particular machine code definition, which is most suitable for those parameters
o Association strategy must incorporate ppcg’s behaviour in order to correctly
map the parameters to existing function definition
2. Julia stores only one machine code definition per function. To overcome this
challenge,
o | could modify Julia’s source to store multiple machine code definitions of the
same function, which has been annotated with @polly or @polly-acc
o Or circumvent the problem by appending machine code to and updating
existing definition of the function and include the association strategy as a
part of the function.

This would be the most complex and time-consuming step in the project.

Timeline

This is a preliminary plan. It would undergo changes with further interaction with the
community and my mentor and as my understanding of the goals evolve. Since this aligns
exactly with my summer vacations, I'll be available on all days throughout the week.

Time Span Activity

April 4 - May 29 Community Bonding Period
Delving deeper into the Polly, Julia and ppcg codebases ;
intensify contact with the community

Coding officially begins!

May 30 - Jun 6 Adapting Julia and Polly to include components and
dependencies of Polly-ACC; Testing Polly-ACC in various
build scenarios

Jun7-Jun 13 Introduce the @polly-acc macro; direct pass manager to

schedule different passes for @polly and @polly-acc

Jun 14 - Jun 26 Define the set of benchmarks that are expected to be

optimized by Polly; Investigate reasons behind failure of
certain benchmarks; Propose changes to appropriate
repositories

Jun 27 - Jun 30

Continue work; Prepare and submit Phase 1 report

Phase 2 starts

Phase 1 evaluation

July 1 -July 7 [buffer] Investigate reasons behind failure of certain
benchmarks; Propose changes to appropriate repositories
July 8 - July 14 Analyze ppcg source and come up with cost effective

parameters-to-code mapping strategy; consider cost-models
from Polly-ACC and Polly’s CPU-optimization passes

July 15 - July 20

Evaluate implementation options of using run-time
parameters to better optimize generated code with
communities

July 21 - July 28

Continue working; Prepare and submit Phase 2 report

Final Phase starts

Phase 2 evaluation

July 29 - Aug 4 Implementation of using run-time parameters to better
optimize generated code
Aug 5 - Aug 11 Testing implementation for quality ; benchmarking specific set

of kernels on different problem sizes.

Aug 12 - Aug 18

Continue benchmarking ; Implement nice fo have features ;
Start documentation

Aug 19 - Aug 25

Implement nice to have features ; continue documentation ;
code cleanup ; start preparing for final evaluation

Aug 26 - Aug 29

Prepare and submit final evaluation

I've already started working on some aspects of the project and believe that | would be well
equipped with required knowledge when GSoC starts. | have left a week long buffer (July
1st - 7th) in case | attend JuliaCon (June 20th - 24th) to deliver a talk on Julia and Polly,
during which | can work in the evenings.

Future Directions

Polly-ACC can be extended to generate code that can run on many GPUs in a single node.
This could be done by partitioning the iterations (or iteration space) across GPUs. A cost
model should be in effect to allow such partitioning only when iteration space is too large for
a single GPU, and there can be benefit from being run on several GPUs with negligible

overheads.

Preliminary Benchmark Results

A kernel’s run-time on the CPU (baseline) and the GPU were benchmarked by invoking,
e julia --polly=no --optimize=3 for the CPU, and
e JULIA_LLVM_ARGS="--polly-target=gpu” julia --check-bounds=no for the GPU
The benchmarks were made on 2 systems,
e S1: System with an Intel i7-4820K CPU and a Tesla K20c GPU
e S2: System with an Intel Xeon E5 v5 2620 CPU and a GeForce 1070 GPU

Speedups of kernels on S1 and S2
I st

100
B s2
| | || | I
1 o [

2mm atax JESUMMY syr2k
Imm fdtd-2d mvt syrk

kernels

About Me

I’'m a final year undergraduate student in computer science and engineering at BITS-Pilani.
Hyderabad Campus in India. I'm interested in systems research, specifically in operating
systems, parallel programming, compilers and computer architecture for HPC.

I’'m currently doing my semester-long undergraduate dissertation at [IT-Hyderabad in
polyhedral compilation under Dr. Ramakrishna Upadrasta. It was here that | started working
in Polly and took up integrating Polly’s GPU targeting capabilities into Julia. Prior to that, |
was in touch with one of Polly’s lead developers, Dr. Tobias Grosser, and contributed a patch
under his guidance.

Earlier, | spent my 2nd year and 3rd year summers at in internship at Indian Institute of
Science (11Sc), Bangalore and Indian Institute of Technology-Madras(lIT-M), Chennai
respectively and programmed GPGPUs. It was at IISc that | first wrote programs for GPUs,
specifically simulating neural-networks. This inspired me to work on an idea | had and
dedicated my 3rd year summer at [IT-M to it. A poster on this work bagged the Best Poster
award at the first edition of the de-HPC conference held at IIT-Bombay in Mumbai. It was
also instrumental in landing me in a chance to participate in the Supercomputing 16
conference, SLC, Utah as a part of the “Experience HPC for Undergraduates” program.

References

1. [1] Polly — Performing Polyhedral optimization on a low-level intermediate
representation

[2] Polly-ACC: A heterogeneous compute compiler

ppcg’s GitHub mirror

Polly’s GitHub mirror

[5]Matthias Reisinger’s GSoC 2016 Proposal

[6]Matthias Reisinger’s GSoC 2016 Final Report

ok wd

https://github.com/llvm-mirror/polly/commit/ca47b855df2a63a753e10b90e1a1302324f842db
http://www.worldscientific.com/doi/abs/10.1142/S0129626412500107?af=R&
http://www.worldscientific.com/doi/abs/10.1142/S0129626412500107?af=R&
http://spcl.inf.ethz.ch/Research/Parallel_Programming/Polly-ACC/
https://github.com/Meinersbur/ppcg
https://github.com/llvm-mirror/polly
https://docs.google.com/document/d/1s5mmSW965qmOEbHiM3O4XFz-Vd7cy9TxX9RQaTK_SQo
http://www.mreisinger.com/2016/08/22/gsoc-finals.html

	Enabling Julia to target GPGPUs using Polly
	Student Information
	Introduction
	Polly
	Polly-ACC

	The @polly macro

	Julia + Polly-ACC: Proof of Concept and Motivating Benchmark
	Benchmarks

	Benefits to the Community
	Deliverables
	Must haves
	Nice to haves

	Approach and Implementation Plan
	1. Adapting Julia and Polly to include components and dependences of Polly-ACC
	2. Introduction of @polly-acc macro
	3. Getting more Julia generated kernels recognized and optimized
	4. Using run-time parameters to better optimize generated code

	Timeline
	Future Directions
	Preliminary Benchmark Results
	
	
	About Me
	References

