

MODULE 2

QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.

LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks

and Queues, Polynomials.

QUEUES ABSTRACT DATA TYPE

DEFINITION

●​ “A queue is an ordered list in which insertions (additions, pushes) and deletions (removals and

pops) take place at different ends.”

●​ The end at which new elements are added is called the rear, and that from which old elements

are deleted is called the front.

●​ Given a queue Q = (a0, a1,……… an-1) , a0, is the front element an-1 is the rear element, ai+1 is

behind ai 0< =i < n-1.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted

from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

●​ Queues may be represented by one-way lists or linear arrays.

●​ Queues will be maintained by a linear array QUEUE and two pointer variables: FRONT-

containing the location of the front element of the queue

●​ REAR-containing the location of the rear element of the queue.

●​ The condition FRONT = NULL will indicate that the queue is empty.

●​ Figure indicates the way elements will be deleted from the queue and the way new elements

will be added to the queue.

●​ Whenever an element is deleted from the queue, the value of FRONT is increased by 1; this

can be implemented by the assignment FRONT := FRONT + 1

●​ When an element is added to the queue, the value of REAR is increased by 1; this can be

implemented by the assignment REAR := REAR + 1

Implementation of the queue operations as follows.

1.​Queue Create

Queue CreateQ(maxQueueSize) ::=

#define MAX_QUEUE_SIZE 100​ /* maximum queue size */

typedef struct

{

int key;

/* other fields */

} element;

element queue[MAX_QUEUE_SIZE];

int rear = -1;

int front = -1;

2.​Boolean IsEmptyQ(queue) ::= front ==rear

3.​Boolean IsFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in addq()

and front in delete(). The function calls would be addq (item); and item =delete();

4.​addq(item)

void addq(int *rear, element item)

{

// add an item to the queue

if (rear == MAX_QUEUE_SIZE-1)

{​

queue_Full(

); return;

}

queue [++rear] = item;

}

Program: Add to a queue

5.​deleteq()

element deleteq(int *front, int *rear)

{​ /* remove element at the front of the queue */

if (front == rear)

return queue_Empty();​ /* return an error key

return queue[++front];

}

Program: Delete from a queue

Drawback of Queue

When item enters and deleted from the queue, the queue gradually shifts to the right as

shown in figure.

In this above situation, when we try to insert another item, which shows that the queue is full

. This means that the rear index equals to MAX_QUEUE_SIZE -1. But even if the space is

available at the front end, rear insertion cannot be done.

Overcome of Drawback using different methods

Method 1:

●​ When an item is deleted from the queue, move the entire queue to the left so that the

first element is again at queue[0] and front is at -1. It should also recalculate rear so

that it is correctly positioned.

●​ Shifting an array is very time-consuming when there are many elements in queue &

queueFull has worst case complexity of O(MAX_QUEUE_SIZE)

Method 2:

Circular Queue

●​ It is “The queue which wrap around the end of the array.” The array positions are

arranged in a circle.

●​ In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The convention

for rear is unchanged.

CIRCULAR QUEUES

Implementation of Circular Queue Operations

●​ When the array is viewed as a circle, each array position has a next and a previous
position. The position next to MAX-QUEUE-SIZE -1 is 0, and the position that
precedes 0 is MAX-QUEUE-SIZE -1.

●​ When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at
position 0.

●​ In circular queue, the variables front and rear are moved from their current position
to the next position in clockwise direction. This may be done using code

Addition & Deletion

●​ To add an element, increment rear one position clockwise and insert at the new

position. Here the MAX_QUEUE_SIZE is 8 and if all 8 elements are added into

queue and that can be represented in below figure (a).

●​ To delete an element, increment front one position clockwise. The element A is

deleted from queue and if we perform 6 deletions from the queue of Figure (b) in

this fashion, then queue becomes empty and that front =rear.

●​ If the element I is added into the queue as in figure (c), then rear needs to

increment by 1 and the value of rear is 8. Since queue is circular, the next

position should be 0 instead of 8.

This can be done by using the modulus operator, which computes remainders.

CIRCULAR QUEUES USING DYNAMIC ARRAYS

●​ A dynamically allocated a

●​ rray is used to hold the queue elements. Let capacity be the number of positions in the

array queue.

●​ To add an element to a full queue, first increase the size of this array using a

function realloc.

Consider the full queue of figure (a). This figure shows a queue with seven elements in

an array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

Figure (c) shows the array after array doubling by relloc

To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

To obtain the configuration as shown in figure (e), follow the steps

1)​ Create a new array newQueue of twice the capacity.

2)​ Copy the second segment (i.e., the elements queue [front +1] through queue

[capacity-1]) to positions in newQueue beginning at 0.

3)​ Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions

in newQueue beginning at capacity – front – 1.

MULTIPLE STACKS AND QUEUES

●​ In multiple stacks, we examine only sequential mappings of stacks into an array.

The array is one dimensional which is memory[MEMORY_SIZE]. Assume n

stacks are needed, and then divide the available memory into n segments. The array

is divided in proportion if the expected sizes of the various stacks are known.

Otherwise, divide the memory into equal segments.

●​ Assume that i refers to the stack number of one of the n stacks. To establish this

stack, create indices for both the bottom and top positions of this stack. boundary[i]

points to the position immediately to the left of the bottom element of stack i, top[i]

points to the top element. Stack i is empty iff boundary[i]=top[i].

Implementation of the delete operation

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of

LINKED LIST

DEFINITION

A linked list, or one-way list, is a linear collection of data elements, called nodes, where the

linear order is given by means of pointers. That is, each node is divided into two parts:

●​ The first part contains the information of the element, and

●​ The second part, called the link field or nextpointer field, contains the address of the

next node in the list.

A linked list is a dynamic data structure where each element (called a node) is made up of

two items - the data and a reference (or pointer) which points to the next node. A linked list is

a collection of nodes where each node is connected to the next node through a pointer.

In the above figure each node is pictured with two parts.

➢​ The left part represents the information part of the node, which may contain an

entire record of data items.

➢​The right part represents the link field of the node

➢​An arrow drawn from a node to the next node in the list.

➢​The pointer of the last node contains a special value, called the NULL.

A pointer variable called first which contains the address of the first node. A special case is the

list that has no nodes; such a list is called the null list or empty list and is denoted by the null

pointer in the variable first.

REPRESENTATION OF LINKED LISTS IN MEMORY

Let LIST be a linked list. Then LIST will be maintained in memory as follows.

1.​ LIST requires two linear arrays such as DATA and LINK-such that DATA[K] and

LINK[K] contains the information part and the nextpointer field of a node of LIST.

2.​ LIST also requires a variable name such as START which contains the location of

the beginning of the list, and a nextpointer sentinel denoted by NULL-which

indicates the end of the list.

Insert GAT to data[5]

Insert node GAT into list

REPRESENTING CHAIN IN C

The following capabilities are needed to make linked representation

1.​ A mechanism for defining a node’s structure, that is, the field it contains. So self-

referential structures can be used

2.​ A way to create new nodes, so MALLOC functions can do this operation

3.​ A way to remove nodes that no longer needed. The FREE function handles this

operation.

1. Defining a node structure

Create a New Empty list

To create a New Node

To place the data into NODE

4. Deletion from the list:

LINKED STACKS AND QUEUES
The below figure shows stacks and queues using linked list. Nodes can easily add or delete a node from the top

of the stack. Nodes can easily add a node to the rear of the queue and add or delete a node at the front

Linked Stack

The representation of n ≤ MAX_STACKS

The initial condition for the stacks is:
top[i] = NULL, 0 ≤ i < MAX_STACKS

The boundary condition is:
top [i] = NULL iff the ith stack is empty

Functions push and pop add and delete items to/from a stack.

Function push creates a new node, temp, and places item in the data field and top in the link field. The

Linked Queue

The representation of m ≤ MAX_QUEUES queues,

The initial condition for the queues is:
front[i] = NULL, 0 ≤ i < MAX_QUEUES

The boundary condition is:

front[i] = NULL iff the ith queue is empty

Functions addq and deleteq implement the add and delete operations for multiple

queues.

Function addq is more complex than push because we must check for an empty queue. If the

queue is empty, then change front to point to the new node; otherwise change rear's link field

to point to the new node. In either case, we then change rear to point to the new node.

Function deleteq is similar to pop since nodes are removing that is currently at the start of

the list. Typical function calls would be addq (i, item); and item = deleteq (i);

APPLICATIONS OF LINKED LISTS – POLYNOMIALS

1.​ Representation of the polynomial:

where the ai are nonzero coefficients and the ei are nonnegative integer exponents such that

em-l > em-2 > ... > e1 > e0 ≥ 0.

Present each term as a node containing coefficient and exponent fields, as well as a pointer

tothe next term.

Assuming that the coefficients are integers, the type declarations are:

We draw polynomial nodes as:

coef expon link

2.​ Adding Polynomials

To add two polynomials, examine their terms starting at the nodes pointed to by a and b.

●​ If the exponents of the two terms are equal, then add the two coefficients and create a

new term for the result, and also move the pointers to the next nodes in a and b.

●​ If the exponent of the current term in a is less than the exponent of the current term inb,

then create a duplicate term of b, attach this term to the result, called c, and advance the

pointer to the next term in b.

●​ If the exponent of the current term in b is less than the exponent of the current term ina,

then create a duplicate term of a, attach this term to the result, called c, and advance the

pointer to the next term in a

Below figure illustrates this process for the polynomials addition.

The complete addition algorithm is specified by padd()

Analysis of padd:

To determine the computing time of padd, first determine which operations contribute to the

cost. For this algorithm, there are three cost measures:

(l) Coefficient additions

(2)​ Exponent comparisons

(3)​ Creation of new nodes for c

The maximum number of executions of any statement in padd is bounded above by m + n.

Therefore, the computing time is O(m+n). This means that if we implement and run the

algorithm on a computer, the time it takes will be C1m + C2n + C3, where C1, C2, C3 are

constants. Since any algorithm that adds two polynomials must look at each nonzero term at

least once, padd is optimal to within a constant factor.

3.​ Erasing a Polynomial

4.​ Circular representation of polynomials

Circular linked list are one they of liner linked list. In which the link fields of last node of the

list contains the address of the first node of the list instead of contains a null pointer.

Advantages:- Circular list are frequency used instead of ordinary linked list because in circular

list all nodes contain a valid address.

The important feature of circular list is as follows.

(1)​In a circular list every node is accessible from a given node.

(2)​Certain operations like concatenation and splitting becomes more efficient in circular list.

●​ We can free the nodes that are no longer used and can reuse the nodes later by maintain

	MODULE 2
	QUEUES ABSTRACT DATA TYPE
	QUEUE REPRESENTATION USING ARRAY
	1.​Queue Create
	Program: Add to a queue
	Program: Delete from a queue
	Overcome of Drawback using different methods
	Method 2:
	CIRCULAR QUEUES
	Addition & Deletion
	CIRCULAR QUEUES USING DYNAMIC ARRAYS
	Implementation of the delete operation
	DEFINITION
	REPRESENTATION OF LINKED LISTS IN MEMORY
	Insert GAT to data[5]
	REPRESENTING CHAIN IN C
	1. Defining a node structure
	To create a New Node
	4. Deletion from the list:
	Functions addq and deleteq implement the add and delete operations for multiple queues.

