T PN
ETRLUCTURES-IICS 40 E 2

MODULE 2
QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues.
LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks

and Queues, Polynomials.

QUEUES ABSTRACT DATA TYPE

DEFINITION

“A queue is an ordered list in which insertions (additions, pushes) and deletions (removals and
pops) take place at different ends.”

The end at which new eclements are added is called the rear, and that from which old elements
are deleted is called the front.

Given a queue Q = (ao, ai,......... an-1) , ao, is the front element an-1is the rear element, ai+1is
behind ai 0< =i <n-1.

If the elements are inserted A, B, C, D and E in this order, then A is the first element deleted
from the queue. Since the first element inserted into a queue is the first element removed,

queues are also known as First-In-First-Out (FIFO) lists.

QUEUE REPRESENTATION USING ARRAY

Queues may be represented by one-way lists or linear arrays.

Queues will be maintained by a linear array QUEUE and two pointer variables: FRONT-
containing the location of the front element of the queue

REAR-containing the location of the rear element of the queue.

The condition FRONT = NULL will indicate that the queue is empty.

Figure indicates the way elements will be deleted from the queue and the way new elements
will be added to the queue.

Whenever an element is deleted from the queue, the value of FRONT is increased by 1; this
can be implemented by the assignment FRONT := FRONT + 1

When an element is added to the queue, the value of REAR is increased by 1; this can be
implemented by the assignment REAR := REAR + 1

LR Bl
ETRLCTURES-IRICSE 304

D |¢ rear
C |¢ rear | C
B |« rear | B B g ¢ rear
A | ¢ pear A |e front | A |« front| A |« front| B |e front
« front
0 1 2 3 4 0 1 2 3 <4
AT [T T | [o [B [c [D] |
f ! !
£r Laa f add r
0o 1 2 3 a4 0O 12 3 a4
LGIs T T 1 [REIslclnle]
to1 f f
£ r f r
add add
0 1 2 3 4 0 1 2 3 4
LT T [Eemls]
1 f f f
I r f r
add delete

P
E 2

structure Queue is
ohjects: a finite ordered list with zero or more elements.
functions:
for all quene € Queue, item € element, max_queue —size € positive integer
Queue CreateQ(max —queue -size) =
create an empty queue whose maximum size is max—queue —size
Boolean IsFullQ(queune, max—queue —size) ::=
if (number of elements in guene == max-queue —size)
return TRUE
else return FALSE
Queue AddQ(quene, item) =
if (IsFullQ(queue)) queue — full
else insert item at rear of gueue and return gueue
Boolean IsEmptyQ(queue) ::=
if (queue == CreateQ(max —queue —size))
return TRUE
else return FALSE
Element DeleteQ(queue) 1=
if (IsEmptyQ(queue)) return
else remove and return the ifem at front of queue.

Structure 3.2: Abstract data type Queue

LR Bl
ETRLCTURES-IRICSE 304

Implementation of the queue operations as follows.

1. Queue Create

PAHCIETE
E 2

Queue CreateQ(maxQueueSize) ::=
#define MAX QUEUE SIZE 100 /* maximum queue size */
typedef struct
{
int key;
/* other fields */
} element;
element queue[MAX QUEUE SIZE];
int rear = -1;

int front = -1;

2. Boolean IsEmptyQ(queue) ::= front ==rear
3. Boolean IsFullQ(queue) ::= rear == MAX QUEUE_SIZE-1

In the queue, two variables are used which are front and rear. The queue increments rear in addq()

and front in delete(). The function calls would be addq (item); and item =delete();

4. addq(item)

void addq(int *rear, element item)

{

// 'add an item to the queue
if (rear == MAX QUEUE_SIZE-1)
{
queue Full(
); return;
}
queue [++rear] = item;

}

Program: Add to a queue

LR Bl P
ETRLCTURES-IRICSE 304 E 2

5. deleteq()

element deleteq(int *front, int *rear)
{ /* remove element at the front of the queue */
if (front == rear)
return queue_Empty(); /* return an error key

return queue[++front];

}

Program: Delete from a queue

6. queueFull()

The queueFull function which prints an error message and terminates

execution void queneFull()

]
[}

fprintfi stderr, "Queue is full, cannot add

element"); exit(EXIT FAILURE);

Example: Job scheduling

® (Juecues are frequently used in creation of a job queuwe by an operating system. 1f
the operating system does not use priorities, then the jobs are processed in the
order they enter the system.

® Figure illustrates how an operating system process jobs using a sequential

representation for its queue.

front |rear | Q[0] Q[1] Q[2] Q[3] Conuments

-1 -1 Queue is empty

-1 0 Il Job 1 1s added

-1 1 J1 J2 Job 2 1s added

-1 2 J1 J2 I3 Job 3 1s added
0 2 J2 I3 Job 1 1s deleted
1 2 I3 Job 2 1s deleted

AT A PO
ETRLCTURES-IRICSE 304 E 2

Drawback of Queue
When item enters and deleted from the queue, the queue gradually shifts to the right as

shown in figure.

o

o

[y

b

W
- & |

In this above situation, when we try to insert another item, which shows that the queue is full
. This means that the rear index equals to MAX QUEUE SIZE -1. But even if the space is

available at the front end, rear insertion cannot be done.

rcome of Drawback using different meth

Method 1:

e When an item is deleted from the queue, move the entire queue to the left so that the
first element is again at queue[0] and front is at -1. It should also recalculate rear so
that it is correctly positioned.

e Shifting an array is very time-consuming when there are many elements in queue &

queueFull has worst case complexity of O(MAX_QUEUE_SIZE)

0 1 2 3 4
[alB|c|D]
1 0 1 2 3 4

!

f r
0 1 2 3 4
[B[c[pE]| |

-1 0 1 2 3 4

t t

f r

0 1 2 3 4
cpfe] | |
-1 0 1 2 3 4

f f

f r
item B is deleted

LR Bl PR
ETRLCTURES-IRICSE 304 E 2

Method 2:
Circular Queue
e It is “The queue which wrap around the end of the array.” The array positions are
arranged in a circle.
e In this convention the variable front is changed. front variable points one position
counterclockwise from the location of the front element in the queue. The convention
for rear is unchanged.

CIRCULAR QUEUES

® [tis “The queue which wrap around the end of the array.” The array positions are
arranged in a circle as shown in figure.

® In this convention the variable front is changed. front variable points one position
counterclockwise from the location of the front element in the queue. The convention

for rear is unchanged.

Tear rear

T front
front front
(a) Initial (b) Addition (c) Deletion
EMPTY QUEUE

Figure 3.6: Empty and nonempty circular queues

T PN
ETRLUCTURES-IICS 40 E 2

Implementation of Circular Queue Operations

e When the array is viewed as a circle, each array position has a next and a previous
position. The position next to MAX-QUEUE-SIZE -1 is 0, and the position that
precedes 0 is MAX-QUEUE-SIZE -1.

e When the queue rear is at MAX QUEUE SIZE-1, the next element is inserted at
position 0.

e In circular queue, the variables front and rear are moved from their current position
to the next position in clockwise direction. This may be done using code

if (rear ==
MAX_QUEUE_SIZE-1)
rear = ();

thsereart+;

Addition & Deletion

e To add an element, increment rear one position clockwise and insert at the new
position. Here the MAX QUEUE_SIZE is 8 and if all 8 elements are added into
queue and that can be represented in below figure (a).

e To delete an element, increment front one position clockwise. The element A is
deleted from queue and if we perform 6 deletions from the queue of Figure (b) in
this fashion, then queue becomes empty and that front =rear.

e If the element I is added into the queue as in figure (c), then rear needs to
increment by 1 and the value of rear is 8. Since queue is circular, the next
position should be 0 instead of 8.

This can be done by using the modulus operator, which computes remainders.

LR Bl P
ETRLCTURES-IRICSE 304 E 2

GD v RPN p I
. A &) = é.q

6 7]
ﬁ'Dﬂt T? T IEEI
rear rear
(@) (b) (c)

void addg(element

item) /* add an item to the queue
.
rear = (rear +1) %o
MAX QUEUE SIZE; if (front ==
rear)
queueFull{rear); /* print error and exit
*/ queue [rear] = item;
i
Program: Add to a circular
queue
clement
deleteq() /* remove front element from the queue

| elementfitem;

if (front == rear)

return queueEmpty():/* return an error key */ front =
(front+1)% MAX QUEUE_SIZE;
return queue|front];

Program: Delete from a circular
queue

LR Bl P
ETRLCTURES-IRICSE 304 E 2

CIRCULAR QUEUES USING DYNAMIC ARRAYS
e A dynamically allocated a

e rray is used to hold the queue elements. Let capacity be the number of positions in the

array queue.

e To add an element to a full queue, first increase the size of this array using a

function realloc.

Consider the full queue of figure (a). This figure shows a queue with seven elements in

an array whose capacity is 8. A circular queue is flatten out the array as in Figure (b).

AR
g‘.aq O] 0] [[B1 [[61 6] [7]

C|D E F G A B
front= 5 T front= 5 rear =4
rear =4
(a) A full circular quene (b} Flattened view of circular full quens

Figure (c) shows the array after array doubling by relloc

01 1] [31 B 4 [51 [6] [71 [81 [91 [10] [11] [12] [13] [14] [15]

C|D |E F G A|lB

front= 5 rear =4
(c) After array doubling
To get a proper circular queue configuration, slide the elements in the right segment (i.e.,

elements A and B) to the right end of the array as in figure (d)

(0] 1] [21 [31 [[5] [6] [7] [8] [[10] [11] [1Z] [13] [14] [15]
C|D E F G A|B

front= 13 rear = 4
(d After shifting right segment

LR Bl P
ETRLCTURES-IRICSE 304 E 2

To obtain the configuration as shown in figure (e), follow the steps
1) Create a new array newQueue of twice the capacity.
2) Copy the second segment (i.e., the elements queue [front +1] through queue
[capacity-1]) to positions in newQueue beginning at 0.
3) Copy the first segment (i.e., the elements queue [0] through queue [rear]) to positions

in newQueue beginning at capacity — front — 1.

01 011 [21 BI M [5]1 [6] [71 [81 [9 [10] [11] [12] [13] [14] [15]

A/'B|C|D |E |F | G

front= 15 rear = 6
(e) Alternative configuration

Below program gives the code to add to a circular queue using a dynamically allocated

A8 addg(element
item) ! /* add an item to the
queue rear = (rear +1) %
capacity; if(front == rear)
queueFull(); /* double capacity */

queue[rear] = item;

Below program obtains the configuration of figure (e) and gives the code for queueFull.
The function copy (a,b.c) copies elements from locations a through b-1 to locations
beginning at .

void
qucucl?ull{) /#* allocate an array with twice the
capacity */ element *newQueue;
MALLOC (newQueue, 2 * capacity * sizeof(* queue));
/* copy from queue to newQueue
*/int start = (front +) %
capacity;
if (start < 2) /* no wrap around */

else opy(queuetstart,

{ UGS Sl ARaRMEIR knewQueue);

LR Bl P
ETRLCTURES-IRICSE 304 E 2

copy(gueue, queuetcapacity, newQueue);
copy(gqueue, queuetreart|, new(Queue+capacity-start);
i
/* switch to newQueue®/ front =
2*capacity — |; rear =
capacity — 2; capacity
* =2: free(queue);
queue= newQueue;
)

Program: queueFull

MULTIPLE STACKS AND QUEUES

e In multiple stacks, we examine only sequential mappings of stacks into an array.
The array is one dimensional which is memory[MEMORY_SIZE]. Assume n
stacks are needed, and then divide the available memory into » segments. The array
is divided in proportion if the expected sizes of the various stacks are known.
Otherwise, divide the memory into equal segments.

e Assume that 7 refers to the stack number of one of the n stacks. To establish this
stack, create indices for both the bottom and top positions of this stack. boundaryl|i]
points to the position immediately to the left of the bottom element of stack i, topfi]

points to the top element. Stack i is empty iff boundary[i]=top[i].

#define MEMORY SIZE 100 * sz oF mesnory *

Hdefine MAR_’STACKS [*" ma=x naimbser of ssacks phas 1
lement = plobal memory declaration
memory[MEMORY SIZE]; imt -

top [MAX STACKS];
int boundary
[MAX STACKS] : intn;

ek ol slwes s e e B 1hes arsasy

LR Bl P
ETRLCTURES-IRICSE 304 E 2

To divide the array into roughly equal segments

top[0] = boundary[0] = -1; for (j=
I;j<n; j++)
top[j] = boundary[j] = (MEMORY SIZE /n) *
j: boundary[n] = MEMORY SIZE - 1;

0 [m/n] 2 [m/n] m-1

!

boundary[0] boundary[1] Emwﬂm:v[rl
top[0] top[1]

All stacks are empty and divided into roughly equal segments

Figure: Initial configuration for s stacks in memory fm].

In the figure, n 15 the number of stacks entered by the user, n < MAX STACKS, and
m=MEMORY SIZE. Stack i grow from boundary[i] + 1 to boundary [i + 1] before it
1%
full. A boundary for the last stack is needed, so set boundary [n] to

Implementation of the add

operation
: /* add an item to the ith
stack */ if (top[i] == boundary[i+l])
stackFull(i);
memory[++top|i]
] = item;
H

LR Bl P
ETRLCTURES-IRICSE 304 E X

Implementation of the delete operation

element pop(int i)
{ /* remove top element from the ith stack */if
{top[1] == boundary[i])
return stackEmptv(i);
return memory|top[i]--]:

il
¥

The top[i] == boundary[i+1] condition in push implies only that a particular stack ran out of
memory, not that the entire memory is full. But still there may be a lot of unused space
between other stacks in array memory as shown in Figure.

Therefore, create an error recovery function called stackFull , which determines if there is any
free space in memory. If there is space available, it should shift the stacks so that space is

allocated to the full stack.

T.E.I[ﬂ] lrrm iJr,-am (1 BI il ti +1] til Bli+1] ‘E:m
bli+1] bli+2]

b boundary . t=top

LR Bl PR
ETRLCTURES-IRICSE 304 E 2

LINKED LIST

DEFINITION

A linked list, or one-way list, is a linear collection of data elements, called nodes, where the
linear order is given by means of pointers. That is, each node is divided into two parts:
e The first part contains the information of the element, and

e The second part, called the link field or nextpointer field, contains the address of the

next node in the list.
A linked list is a dynamic data structure where each element (called a node) is made up of
two items - the data and a reference (or pointer) which points to the next node. A linked list is
a collection of nodes where each node is connected to the next node through a pointer.

Jirst

S
[BAT] J—»{CAT[1 »{FAT| }— - —=[WAT|0]
Usual way to draw a linked list

NAME
or |l

START

S i - - - - - - - . -

— MNextpointer field of third node

Information part of third node

Fig: Linked list with 6 nodes

In the above figure each node is pictured with two parts.

> The left part represents the information part of the node, which may contain an

entire record of data items.
> The right part represents the link field of the node
> An arrow drawn from a node to the next node in the list.
> The pointer of the last node contains a special value, called the NULL.
A pointer variable called first which contains the address of the first node. A special case is the

list that has no nodes; such a list is called the null list or empty list and is denoted by the null

pointer in the variable first.

LR Bl P
ETRLCTURES-IRICSE 304 E 2

REPRESENTATION OF LINKED LISTS IN MEMORY
Let LIST be a linked list. Then LIST will be maintained in memory as follows.
1. LIST requires two linear arrays such as DATA and LINK-such that DATA[K] and
LINKJK] contains the information part and the nextpointer field of a node of LIST.
2. LIST also requires a variable name such as START which contains the location of
the beginning of the list, and a nextpointer sentinel denoted by NULL-which
indicates the end of the list.
3. The subscripts of the arrays DATA and LINE will be positive, so choose NULL =
(), unless otherwise stated.
The following examples of linked lists indicate that the nodes of a list need not occupy
adjacent elements in the arrays DATA and LINK, and that more than one list may be

maintaingd in the same linear arrays DATA and LINE. However, each list must have its

own pointer variable giving the location of its first node.

D LI
N «
1 HAT 15
2
3 CAT P
4 EAT 0
s GAT 1
6
. WAT 0
g BAT 3
0 FAT 5
10
q | VAT 7

Insert GAT to data[5]

LR Bl P
ETRLCTURES-IRICSE 304 E 2

rivst

[Bar [J—+car | +—Frar [+——{rar | ;—Ffmar | |

m GAT

Insert node GAT into list

REPRESENTING CHAIN IN C
The following capabilities are needed to make linked representation
1. A mechanism for defining a node’s structure, that is, the field it contains. So self-
referential structures can be used
2. A way to create new nodes, so MALLOC functions can do this operation
3. A way to remove nodes that no longer needed. The FREE function handles this

operation.

1. Defining a node structure

typedef struct listNede *listPointer

typedef struct

char datal[4];
listPointer list;
I listWNode;

Create a New Empty list

listPointer first HULL

To create a New Node

MALLOC (first, sirzeaf({*first)):

To place the data into NODE

strcpy (first— data, "BAT"Y) ;
first. link = HNULL

ST P
ETRLUCTURES-IICS 40 E 2
* first
first >data — =
B A T 0 NULL
-

first ﬁ T

ﬁ_rsr — data [0} Jirst —> dara [2]

A

Jirst — link

Jirsr > dara [1] first — data [3]

2. Two-node linked

Jzd

{ S*create a linked list with Cwo

I

nodes*/ listPointer first,second;
MALLOZ (first,sizacf (*first)l) s
MALLOC (second, sizeof (*second)) ;
Second->1Link=MNLULL
Second->data=Z0;

First—->data=10;
First-=>link=sscon
d;

Return first

+
L.L.Iﬂ. o oo : o e e el

imsertomn:

wold insert(listPointer *first, listPointer
{
listPointer temp:
malloc (temp, sizecf (*temp) ;
temp->data=50;
if(*first)
{
temp->link; =->1link;
}
=1 se
{
temp->link;
*first->temp;

%)

:
)
f

LR Bl P

ETRLUCTURES-ICSE N0 E 2
first first X
s070] L T3 T+
It ; -
\I ’
1]
Inserting into an empty Or nonempty
list
4. Deletion from the list:
. Deletion depends on the location of the nodes,
® We have three pointers:
O first points to start of the list,
O x points to the node that we have to
delete
O trail points to the node the precedes to
X.
vold delete(listPointer *first, listPointer trail, listPointer =)
if(trail)
trail-=link=x->link;
else
*first=(*first)=->1link:
fres(x);

Deletion from list

L

. Printing out a
t

Fal

wold printList(listPointer first)
|
printf (“"The list contains”);
for{;first;first=first->1link)
Frintfi*%4d”, first=>data) s
printf (™Wn™);

Printing list

P

LR Bl
E 2

ETRLCTURES-IRICSE 304

LINKED STACKS AND QUEUES

The below figure shows stacks and queues using linked list. Nodes can easily add or delete a node from the top
of the stack. Nodes can easily add a node to the rear of the queue and add or delete a node at the front

data link

[:j[; — top
1]

L’ front B rear
I:]:_J l data link
Ci A [FoA T F=—=]0

(b) Linked queue

(a) Linked stack
Linked Stack

The representation of n < MAX STACKS

$lefine MAXY STACES 10 /* maximum number of stacks */
typedef struct |

int key;

S* other fields */

lelement;

typedef struct stack *stackPointer;
typedef struct |
element data; stackPointer
link;
I stack;
stackPointer top|[MARX STACES];

The initial condition for the stacks is:
top[i] = NULL, O <1< MAX_STACKS

The boundary condition is:
top [i1] = NULL iff the ith stack is empty

LR Bl P
E 2

ETRLCTURES-IRICSE 304 x

Functions push and pop add and delete items to/from a stack.

wold push(int 1, element item)
{/* add item to the ith stack */
stackPointer temp;
MALLOC (temp, sizeof (*temp));
tempdata = item;
temp—link = top[i];
topl[i] = temp;

Add to a linked stack

Function push creates a new node, temp, and places item in the data field and top in the link field. The

variable top is then changed to point to temp. A typical function call to add an element to the ith stack
would

ST ATV N)
{ f* remove top elemeant from the ith stack */f
stackPolinter temp = top[il:

aelemaent item:

if {! temp)

return stackEmpey () ;
item = temp-.data;
cop[i] =

temp-link; free
(Lemp) ;
return item;

DL obae Socomm - L & =olremecd
E R = P S

Function pop returns the top element and changes top to point to the address contained in
its link field. The removed node is then returned to system memory. A typical function

call to delete an element from the ith stack would be item = pop (i);

LR Bl P
ETRLCTURES-IRICSE 304 E 2

Linked Queue
The representation of m < MAX QUEUES queues,

$define MAX-QUEUES 10 /* maximum number of gususs */
Typedef struct queue *gueuePointer;
typedef struct |
element data;
queuePointer link;
1 gueue;

queusPointer front[MAX QUEUES], rear[MAX QUEUEE]:

The initial condition for the queues is:
front[i] = NULL, 0 < i < MAX QUEUES

Theboundaqzcondnunlm. front[i] = NULL iff the ith queue is empty

Functions addq and deleteq implement the add and delete operations for multiple

queues.

voild addgii,
item)
{ f* add item to tThe rear of gueue
*/ gqueuePointer temp;
MALLOC (temp, sizeof(*temp)):
temp.data =
item; temp-link

= HMULL; if
(front[i])
rear[il] —=link = temp;
else
front[i] =
' temp: rear[i] =
teme s
Program: Add to the rear of a linked
queus

Function addq is more complex than push because we must check for an empty queue. If the
queue is empty, then change front to point to the new node; otherwise change rear's link field

to point to the new node. In either case, we then change rear to point to the new node.

element deleteg{int i}
{/* delete an element from gueuws 1 */

gqueusFolnter temp =

front[i1] ; element item;
if (! temp)
return

gqueuseEmpty ()¢ item =
temp—data; front[i]-
temp—-link;

free (templ

return item;

1
Program: Delete from the front of a linked gueaus

LR Bl P
ETRLCTURES-IRICSE 304 E 2

Function deleteq is similar to pop since nodes are removing that is currently at the start of
the list. Typical function calls would be addq (i, item); and item = deleteq (i);
APPLICATIONS OF LINKED LISTS — POLYNOMIALS

1. Representation of the polynomial:

A@) =a, 1x™ '+ +aex"®

where the ai are nonzero coefficients and the ei are nonnegative integer exponents such that
em-1>em-2>..>el >e0>0.
Present each term as a node containing coefficient and exponent fields, as well as a pointer

tothe next term.

Assuming that the coefficients are integers, the type declarations are:

typedef struct polyNode
*polyPointer; typedef struct |
int coef; int expon;
palyPointer link;
} polyMode;

poelyPointer a,b;

We draw polynomial nodes as:

coef | expon | link

Figure shows how we would store the polynomials

a=3%x"+2%% + 1

and _
b = 8x' —3x10 & 10x°
a—={3]14] J—={2[8] J—={1]0]0]
(a)
b——s 8 |14] 1—=-3[10] |—=10]6]0]
(b)

Figure: Representation of 3x'*+2x®+1 and 8x'*—3x1"+10x°

LR Bl P
ETRLCTURES-IRICSE 304 E 2

2. Adding Polynomials

To add two polynomials, examine their terms starting at the nodes pointed to by a and b.

° If the exponents of the two terms are equal, then add the two coefficients and create a
new term for the result, and also move the pointers to the next nodes in @ and b.

° If the exponent of the current term in a is less than the exponent of the current term inb,
then create a duplicate term of b, attach this term to the result, called ¢, and advance the
pointer to the next term in b.

° If the exponent of the current term in b is less than the exponent of the current term ina,
then create a duplicate term of a, attach this term to the result, called ¢, and advance the
pointer to the next term in a

Below figure illustrates this process for the polynomials addition.

ERENES L ENERRT e RN TR R
b \a
8 [14] J—={3[10] {1060
c[11]14] 0]
(i) a — expon == b — expon
EIEINS a ENENES o EEE NN
& =
(F 1] ~{3[®] } ~{10] 60
c[1[1a] L ={3][10] 0
(ii) a — expon < b — expon
|3 []14] ;—= 28] =100
: e — L B (| i
\a b

8]14] }—={3]10] —}—=[10] 6] 0

c "'1'1 1*4'% —4 == 10 el D 2 | ©

(iii) a — expon > b — expon

Figure: Generating the first three terms of c = a +b

LR Bl PR
ETRLCTURES-IRICSE 304 E X

The complete addition algorithm is specified by padd()

polyPointer padd(polyPointer a, polyPointer b)
{/* return a polynomial which is the sum of a and b */
polyPointer ¢, rear, temp;
int sum;
MALLOC (rear, sizeof (*rear));
& = rear;
while (a && Db)
switch (COMPARE (a—expon,b—expon)) {
case —1: /* a—expon < b—expon */
attach (b—coef, b—expon, &rear) ;
b = b—link;
break;
case 0: /* a—expon = b—expon */
sum = a—coef + b—coef;
if (sum) attach(sum,a—expon, &rear) ;
a = a—link; b = b—link; break;
case 1: /* a—expon > b—expon */
attach (a—coef, a—expon, &rear) ;
a = a—link;
}
/* copy rest of list a and then list b */
for (; a; a = a—1link) attach(a—coef, a—expon, &rear)
for (; b; b = b—1link) attach(b—coef,b—expon, &rear)
rear—1ink = NULL;
/* delete extra initial node */
temp = ¢; ¢ = ¢c—>1link; free(temp);
regurn o

r
.
L4

Program : Add two polynomials

void attach(float cocefficient, int exponent,
, polyPointer *ptr)

{/* create a new node with coef = coefficient and expon =
exponent, attach it to the node pointed to by ptr.
ptr is updated to point to this new node */

polyPointer temp;

MALLOC (temp, sizeof (*temp)) ;
temp—coef = coefficient;
temp—expon = exponent;
(*ptr)—link = temp;

*ptr = temp;

Program : Aitach a node to the end of a list

LR Bl PR
ETRLCTURES-IRICSE 304 E 2

Analysis of padd:

To determine the computing time of padd, first determine which operations contribute to the
cost. For this algorithm, there are three cost measures:

(1) Coefficient additions

(2) Exponent comparisons

(3) Creation of new nodes for ¢

The maximum number of executions of any statement in padd is bounded above by m + n.
Therefore, the computing time is O(m+n). This means that if we implement and run the
algorithm on a computer, the time it takes will be Clm + C2n + C3, where C1, C2, C3 are
constants. Since any algorithm that adds two polynomials must look at each nonzero term at

least once, padd is optimal to within a constant factor.

3. Erasing a Polynomial

4. Circular representation of polynomials
Circular linked list are one they of liner linked list. In which the link fields of last node of the

list contains the address of the first node of the list instead of contains a null pointer.
Advantages:- Circular list are frequency used instead of ordinary linked list because in circular
list all nodes contain a valid address.

The important feature of circular list is as follows.

(1) In a circular list every node is accessible from a given node.

(2) Certain operations like concatenation and splitting becomes more efficient in circular list.

P

LR Bl
E 2

ETRLCTURES-IRICSE 304

Jaa] 2z [[+——z Jo [=

Circular representation of 3x'*+2x"+1

e We can free the nodes that are no longer used and can reuse the nodes later by maintain
a list called freed. When new node 1s needed we examine the this list. If the list is not
empty then we may use one of the nodes. Only when list is empty we need to
create a node using malloc.
® [et avial be a variable of type polyPointer that points to first node in our list of
freed nodes. We call this list as available space list or avail list.

® [nitially set avail to NULL.instead of using malloc or free we use getNode and

retNode.
® Erase circular list in a fxed amount of time independent of number of nodes in list

using cerase

colyPointer gethode (voeid)

{

polyPointer node;
if{avail)

{

node=avail;
avail=avail->=link;

=1 5
malloc (node, sizeof (*node));

return node

Program:getNode function

wvold retNode(polyPointer node)

node=>link=avail;
avall=node;

Program: retNoede function

LR Bl P
ETRLCTURES-IRICSE 304 E 2

volid cerase(pelyFointer *ptr)

i

if (*ptr)

i

temp=(*ptr)->1link;
(*ptr)—->link=awvai
1; avail=temp;

*pEr=MNULL;

}
}
Program:Erasing a circular list
header
(a) Zero polynomial
header

!

L (0T

O)3% 0 2x8 4

AT
STRLUC TURES- 1315 304
PRI ELTL
E X

mpadd{polyPointer a, polyPointer b)
5 polynomlalﬁ a and b are singly linked circular lists

{
with @ header node. Return a polynomi :
o :
the sum of a and b */ polynomial which is

polyPointer startA, c, lastC;
int sums done = FALSE;

starth = @i /* record start of a */

2= a-)lJI-I'Iki /* skip header node for a and b*/
b= b—1ink;

¢ = getNode () /* get a header node for sum *f
c—expon = —1; lastC = cj

do {

switch (COMPARE (a—expon, b—expon}) {
case —1: /* a—expon < b—expon */
attach(b—ecoef,b—eexpon,&lagtC};
b = b—rlink;
break;
aggsig: /% a-IEXPCR p—expon */
if (startd == a) done = TRUE;

else |
sum =
if (sum) at
a = a—1inki

a—coef + b—coef;
tachisum,ar+expon,&lastC};

b = b—link;

}
break;
case 1: /* a—expon p—expon *)
attach {a-}coef, a—expon; glastC)i
a = a—link;
)

} while (!done);

lastco1link = ¢;

Feturn c;

	MODULE 2
	QUEUES ABSTRACT DATA TYPE
	QUEUE REPRESENTATION USING ARRAY
	1.​Queue Create
	Program: Add to a queue
	Program: Delete from a queue
	Overcome of Drawback using different methods
	Method 2:
	CIRCULAR QUEUES
	Addition & Deletion
	CIRCULAR QUEUES USING DYNAMIC ARRAYS
	Implementation of the delete operation
	DEFINITION
	REPRESENTATION OF LINKED LISTS IN MEMORY
	Insert GAT to data[5]
	REPRESENTING CHAIN IN C
	1. Defining a node structure
	To create a New Node
	4. Deletion from the list:
	Functions addq and deleteq implement the add and delete operations for multiple queues.

