Дата **30.03.2023.** Группа ТЭК 1/1. Курс 1

Дисциплина: Физика

Тема занятия: Свободные колебания в колебательном контуре

Цель занятия:

-методическая - совершенствование методики проведения лекционного занятия;

- учебная сформировать представление об электрическом поле, рассмотреть его характеристики; сформулировать понятие физической величины «напряженность»; рассмотреть проводники и диэлектрики в электрическом поле;
- воспитательная обучать учащихся соотносить полученные знания с наблюдаемыми явлениями.

Вид занятия: Лекция Межпредметные связи:

Обеспечивающие: Техническая механика, Физика

Рекомендуемая литература

- 1.Мякишев Г.Я. Физика: учеб. для 10 кл. общеобразоват. организаций: базовый и углубл. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. Н.А. Парфентьевой. 9 изд.,стер. М.: Просвещение, 2022. 432 с.: ил. (Классический курс)
- 2.Мякишев Г.Я. Физика: учеб. для 11 кл. общеобразоват. организаций: базовый и углубл. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М.Чаругин; под ред. Н.А. Парфентьевой. 10 изд.,стер. М.: Просвещение, 2022. 432 с.: ил. (Классический курс)
- 3.Рымкевич А.П. Задачник: сборник для учащихся общеобразовательных учреждений. М., «Дрофа» 2008.

Тема: Свободные колебания в колебательном контуре

- 1. Ведение
- 2. Свободные колебания
- 3. Превращение энергии при электромагнитных колебаниях
- 4. Уравнение, описывающее процессы в колебательном контуре

1. Введение

Электромагнитные колебания были открыты почти случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки (рис.1). Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В этом ничего удивительного не было: электрический ток и должен намагничивать стальной сердечник катушки. Странным же было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой — южным.

Рисунок 1 – Лейденская банка

Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других — другой. Далеко не сразу поняли, что при разрядке конденсатора через катушку в электрической цепи возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом.

2. Свободные колебания

Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями. Обычно эти колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Поэтому для их наблюдения и исследования очень удобен электронный осциллограф.

В электронно-лучевой трубке осциллографа узкий пучок электронов попадает на экран, способный светиться при его бомбардировке электронами.

На горизонтально отклоняющие пластины трубки подается переменное напряжение развертки u_p пилообразной формы (рис.2).

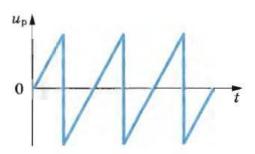


Рисунок 2

Сравнительно медленно напряжение повышается, а потом очень резко понижается. Электрическое поле между пластинами заставляет электронный луч пробегать экран в горизонтальном направлении с постоянной скоростью и затем почти мгновенно возвращаться назад. После этого весь процесс повторяется. Если теперь присоединить вертикально отклоняющие пластины трубки к конденсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране образуется временная развертка колебаний (рис.3), подобная той, которую вычерчивает маятник с песочницей над движущимся листом бумаги. Колебания затухают с течением времени (рис.3).

Рисунок 3 – Осциллограф

Эти колебания являются свободными. Свободными колебаниями называются колебания, которые возникают в системе после выведения ее из положения равновесия. В нашем случае колебательная система (конденсатор и катушка) выводится из равновесия при сообщении

конденсатору заряда. Зарядка конденсатора эквивалентна отклонению маятника от положения равновесия.

Нетрудно получить в электрической цепи также и вынужденные электромагнитные колебания. **Вынужденными колебаниями** называются колебания в цепи под действием внешней периодически изменяющейся электродвижущей силы.

Свободные электромагнитные колебания возникают при разрядке конденсатора через катушку индуктивности. Вынужденные колебания вызываются периодической ЭДС.

3. Превращение энергии при электромагнитных колебаниях

Простейшая система, в которой могут происходить свободные электромагнитные колебания, состоит из конденсатора и катушки, присоединенной к его обкладкам (рис.4), и называется колебательным контуром.

$$W_{\rm a} = \frac{q_m^2}{2C}. (4.1)$$

где q_m — заряд конденсатора, а C — его электроемкость. Между обкладками конденсатора возникнет разность потенциалов U_m

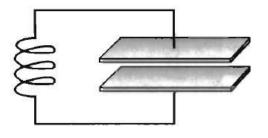


Рисунок 4

Зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя (рис.5, а). При этом конденсатор получит энергию

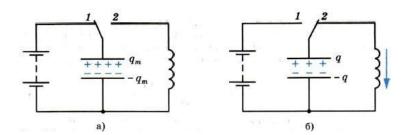
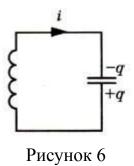


Рисунок 5

Переведем переключатель в положение 2 (рис.5, б). Конденсатор начнет разряжаться, и в цепи появится электрический ток. Сила тока не сразу

достигает максимального значения, а увеличивается постепенно. Это связано с явлением самоиндукции. ЭДС самоиндукции возникает при появлении тока в цепи и препятствует его увеличению, поэтому ток в цепи растет постепенно.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой


$$W_{\rm M}=\frac{Li^2}{2}.\tag{4.2}$$

где i — сила переменного тока; L — индуктивность катушки.

В момент, когда конденсатор полностью разрядится (q = 0), энергия электрического поля станет равной нулю. Энергия же магнитного поля тока, согласно закону сохранения энергии, будет максимальной. В этот момент сила тока также достигнет, конечно, максимального значения Im.

4. Уравнение, описывающее процессы в колебательном контуре

Перейдем теперь к **количественной теории процессов** в колебательном контуре. Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (рис.6).

Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии. Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

$$W=\frac{Li^2}{2}+\frac{q^2}{2C}.$$

Эта энергия не меняется с течением времени, если сопротивление R контура равно нулю. Значит, производная полной энергии по времени равна нулю. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

$$\left(\frac{Li^2}{2}\right)' + \left(\frac{q^2}{2C}\right)' = 0,$$

или

$$\left(\frac{Li^2}{2}\right)' = -\left(\frac{q^2}{2C}\right)'. \tag{4.5}$$

Физический смысл уравнения (4.5) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак «—» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

Вычислив производные в уравнении (4.5), получим

$$\frac{L}{2} \cdot 2ii' = -\frac{1}{2C} \cdot 2qq'. \tag{4.6}$$

Но производная заряда по времени представляет собой силу тока в данный момент времени:

$$i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = q'. \tag{4.7}$$

Поэтому уравнение (4.6) можно переписать в следующем виде:

$$Li'i = -\frac{qi}{C}. (4.8)$$

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому, как производная скорости по времени (ускорение) есть вторая производная координаты по времени. Подставив в уравнение (4.8) і' = q" и разделив левую и правую части этого уравнения на Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

$$q'' = -\frac{1}{LC}q. \tag{4.9}$$

В уравнении (3.11) коэффициент $\frac{k}{m}$ представляет собой квадрат собственной частоты колебаний. Поэтому и коэффициент $\frac{1}{LC}$ в уравнении (4.9) также представляет собой квадрат циклической частоты — в этот раз для свободных электрических колебаний:

$$\omega_0^2 = \frac{1}{LC}, \ \omega_0 = \frac{1}{\sqrt{LC}}.$$
 (4.10)

Период свободных колебаний в контуре, таким образом, равен:

$$T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC}.$$
 (4.11)

Формула (4.11) называется **формулой Томсона** в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Контрольные вопросы

- 1. Что называют электромагнитными колебаниями?
- 2. В чем различие между свободными и вынужденными электромагнитными колебаниями?
- 3. Написать формулу для определения периода свободных колебаний в контуре

Задание для самостоятельной работы:

- 1. Краткий конспект лекции (формулы и определения)
- 2. Письменно ответить на контрольные вопросы
- 3. Фотографию прислать в личном сообщении ВК https://vk.com/id139705283

На фотографии вверху должна быть фамилия, дата выдачи задания, группа, дисциплина. Например: «Иванов И.И, <u>30.03.2023</u>, группа ТЭК1/1 «Физика»