This is my submission for the final evaluation of the CONIKS for Tor Messenger project which I
started with my awesome mentors Marcela S. Melara from Princeton University, Arlo Breault
from The Tor Project, and Ismail Khoffi from EPFL. They always had a smile on their face and
gave me many valuable comments/feedback. It has been my greatest journey. Everything related
to GSoC was so awesome. I'm really glad I got such supportive mentors. Thanks a lot to The Tor

Project and GSoC!
1. Project description:

Tor Messenger is a cross-platform chat program that aims to be secure by default and sends all
of its traffic over Tor. CONIKS is an end-user key management and verification system for
end-to-end secure communication services, which improves upon existing key management
systems by providing both strong security and better usability using a model called key
transparency.

This project consists of two parts: a CONIKS key server for key management and a CONIKS
client plugin, which performs the key verifications, for the Tor Messenger client. The

functionalities include key registrations, key changes, lookups and monitoring.
2. Achievement:

We have a prototype server running that accepts the registrations and enables the client to

perform the protocol.
3. Project commits:
CONIKS-Go repo:

Commits already merged into master:

htips://github.com/coniks-sys/coniks-go/commits?author=c6

Pull requests which are under reviewing;:

https://github.com/coniks-sys/coniks-go/pulls/c633

ctypes-otr repo:


https://github.com/coniks-sys/coniks-go/commits?author=c633
https://github.com/coniks-sys/coniks-go/pulls/c633

Commits already merged into master:

https://github.com/arlolra/ctypes-otr/commits/master?author=c633

Pull requests which are under reviewing:

https://github.com/arlolra/ctypes-otr/pulls/c633

4. Work done:

e Implemented a CONIKS library in Go which includes the core CONIKS protocol
implementation, a Merkle prefix tree implementation, an implementation of CONIKS’
crypto primitives, cgo library for the client, as well as a reference key server with
registration, key lookup and monitoring functions.

o The Merkle prefix tree is one of the most important components of the CONIKS
protocol. We implemented this data structure separately as a library to help
other developers use it in their implementation easily.

o Currently, the format of messages exchanged by CONIKS clients and servers is
JSON.

o The connection between the key server and clients is secured using TLS.

o PRs: #29, #71 & #72 (key server implementation); #64 (protocol
implementation); #1 & #8 (Merkle prefix tree library)

e Implemented the CONIKS preferences panel for the ctypes-otr addon (which is an
existing OTR add-on for Tor Messenger).

o The CONIKS preferences panel in the ctypes-otr addon is written using XUL
technology. I also tried to use new ES6 syntaxes in my implementation.

o PR: #82

e Started integrating the cgo library (libconiks) into the ctypes-otr addon.

o The client library was compiled to a shared library using cgo. This library is then
wrapped using the js-ctypes, so that it can be called from the add-on.
Unfortunately, the client library currently works on Linux and macOS only . The
approach for this client library is as follows: it takes the raw server response
message that is a JSON string. Then it will do all unmarshalling and verifications

and return the error code to the addon. The add-on (Javascript part) now just


https://github.com/arlolra/ctypes-otr/commits/master?author=c633
https://github.com/arlolra/ctypes-otr/pulls/c633
https://github.com/coniks-sys/coniks-go/pull/29
https://github.com/coniks-sys/coniks-go/pull/71
https://github.com/coniks-sys/coniks-go/pull/72
https://github.com/coniks-sys/coniks-go/pull/64
https://github.com/coniks-sys/coniks-go/pull/1
https://github.com/coniks-sys/coniks-go/pull/8
https://github.com/arlolra/ctypes-otr/pull/82

sends & receives the messages, and calls the library functions and writes down
the verified result into files.
o PRs: #309, #83, #84
e Designed a novel registration protocol, which would be used by third party of CONIKS
(who does not provide the communication services, e.g., Tor Messenger). The detailed
documentation of this protocol is available here.
e Implemented the registration bots which is an specific implementation of the account
verification protocol for Twitter.
o The bot and key server would be run in the same machine, and the key server
accepts the registration requests from the bot only. Thus, we have established an
Unix socket between the bot and the key server.
o PR:#33
5. Work left:

Much work remains:

- The client registration function is under review.
- The client key lookups and monitorings are under development.
- Documentation for the project is incomplete. However, we have many discussions on the

Github issues/pull requests, which can be a part of the documentation.

There are also many open issues that need to be solved before this project can go to the

production stage (coniks-go repo & ctypes-otr repo).

6. Future work:

I will absolutely keep working on this project after the end of GSoC. We plan to have a release
before the end of August, and this release will be published on CONIKS’s mailing list

(https://coniks.cs.princeton.edu/subscribe.html). We would like to receive feedback from the

community on our implementation as well as the current open issues.


https://github.com/coniks-sys/coniks-go/pull/39
https://github.com/arlolra/ctypes-otr/pull/83
https://github.com/arlolra/ctypes-otr/pull/84
https://github.com/coniks-sys/coniks-go/pull/68
https://github.com/coniks-sys/coniks-go/pull/33
https://github.com/coniks-sys/coniks-go/issues
https://github.com/arlolra/ctypes-otr/issues?q=is%3Aissue+is%3Aopen+label%3Aconiks
https://coniks.cs.princeton.edu/subscribe.html

