
All About UNIX
Table of Contents

Introduction
What is UNIX? What is a CLI?
History of UNIX
Strengths of UNIX

Moving around
ls
man
Structure of a command
cd and paths
tab completion
Regular expressions
mv and cp
rm
Interrupts

Stream basics
the stream
cat
echo

Stream-friendly commands
head and tail
cut
sort
uniq
wc

Heavy-duty text tools
grep
sed
Chained commands

Bonus material
nano
find
which
alias
ssh

Introduction

1.​ What is UNIX? What is a CLI?
a.​ CLI - command line interface (as opposed to GUI - graphical user interface)
b.​ uses only text-based input to signal interaction, as opposed to point-and-click or

top-down databases

2.​ History of UNIX
a.​ UNIX was a pet project to help “time-share” computers with more than one user

that was written up as a paper and distributed in the 70s.
b.​ People tried to make special versions in the 80s, but at this point most people

have settled into the same underlying structure for just about every modern OS
(beside Windows)

3.​ Strengths of UNIX
a.​ Simplicity (just typing and reading text)
b.​ Power (fast and can get at everything on your computer)
c.​ Versatility (works for all kinds of programs and files)
d.​ Accessibility (it’s always available on your computer even when other

applications fail)
e.​ Universality (if you run anything besides Windows, you have it)
f.​ Badassery (you look like a serious pro when you’re using it)

Moving around

4.​ ls
a.​ ls - list the contents of the director you’re in
b.​ Can be run on other directories, like ls Documents/

5.​ man
a.​ man [command] - look up the usage and meaning of command
b.​ Useful for built-in commands you know the name of but don’t remember how to

use perfectly
c.​ If there’s no man page, try running the command with [command] --help

6.​ Structure of a command
a.​ Example command: ls -lh Documents/
b.​ Command: the thing you run (ls)

c.​ Flags: optional settings you can enable or disable (-l meaning show more
information, -h meaning list file sizes in human-friendly formats, and -lh meaning
both -l and -h)

d.​ Operands: the “arguments” of your command, or the specific targets of it
(Documents/)

7.​ cd and paths
a.​ cd [path]: change directory to the path specified
b.​ absolute paths: start with the root directory (/) and work your way down

e.g. /Users/xanda/Documents/
c.​ based on homedir: where user-specific files go, and specified by ‘~’

e.g. ~/Documents/
d.​ relative paths with . or ..

e.g. if you start at Documents, ., or ../Downloads/

8.​ tab completion
a.​ if you’ve started typing a part of a path to a directory, hit tab once to avoid typing

the rest.
b.​ Hitting tab once after typing ~/Doc should fill in ~/Documents.
c.​ If you hit tab once and nothing happens, hit tab twice in a row - you may have

entered the prefix for multiple paths (e.g. ~/Do could be ~/Documents or
~/Downloads)

9.​ Regular expressions
a.​ if you want Unix to match all paths of a given format, you can use regular

expressions
b.​ e.g. ls ~/Do* should run ls for both Documents and Downloads (and any

other directory starting with D)
c.​ other regexps work, but stackoverflow is preferred to spending much time on

them - they’re written differently than python ones

10.​ mv and cp
a.​ mv [path1] [path2]: move the file at path1 to path2. If path2 is an existing

directory, moves the file specified by path1 into path2. Also used to rename files.
b.​ cp [path1] [path2]: make a copy of the thing from path1 at new location

path2. Again, if path2 is an existing directory, moves path1 to path2.
c.​ Both of these can work to move/copy directories, but to do so with cp, you should

use the flag -R (recursive) to make sure everything in the directory copies over

11.​ rm
a.​ rm [path]: permanently, irrecoverably deletes the thing at path.

b.​ has several flags to watch out for:
i.​ -r: recursively goes through specified directory deleting (-r is a common

flag)
ii.​ -f: deletes anything it has permission to delete, even if the system would

rather you didn’t
iii.​ -i: prompts before deleting each file
iv.​ -v: prints the list of files you delete (v is a common flag for being

“verbose”)
c.​ if anyone tells you to rm -rf / or rm -rf *, they are trying to make you do

bad things

12.​ Interrupts
a.​ Sometimes, you run something bad and need to make it stop
b.​ Ctrl-d is computer-interrupt-speak for “Please stop”
c.​ Ctrl-c is computer-interrupt-speak for “STOP NOW”
d.​ If neither of these work, close the terminal window
e.​ If that still doesn’t work, it will be worthwhile to learn about killing processes, but

this is out of scope

Stream basics

13.​ the stream
a.​ UNIX uses “streams” to refer to the movement of textual or byte-wise information

from one place to another. Streams include
i.​ the output stream (also called “standard out” or stdout) printed to the

terminal window
ii.​ the input stream (also called “standard in” or stdin)
iii.​ the error stream (also called “standard error” or stderr)

b.​ [command] > [file] : takes the text printed to the command line output stream by
command and writes it to new file file (typically, whatever would print directly on
your screen). This may overwrite an existing file.

c.​ [command] < [file]: takes the text from file and feeds it into command as input
d.​ [command1] | [command2] : takes the output from command1 and feeds it in as

input to command2
e.​ [command] >> [file]: like [command] > [file], but the output of command is

appended to file instead of overwriting

14.​ cat
a.​ cat [file1] : prints out the entirety of file1 to stdout
b.​ cat [file1] [file2] …: prints out files file1, file2, etc. in order to the screen,

effectively concatenating them

c.​ Used to get files into streams so you can do other fun stuff to them

15.​ echo
a.​ echo [string] repeats string back to you
b.​ Like the “print” statement of the UNIX world, except it doesn’t require quotes

around the text
c.​ Gets known strings into streams so you can do fun stuff to them

Stream-friendly commands
(These can be called with either a file as an argument or as part of a set of streamed
commands)

16.​ head and tail
a.​ head grabs the beginning lines of your input stream and prints it to the output

stream
b.​ head -n [number] prints the first number lines of the file to the output stream
c.​ tail works the same way, but refers to the last lines of the file
d.​ tail -f will start by printing the end of the file and then wait for further lines to

be written to the file. This won’t stop without an interrupt.

17.​ cut
a.​ cut -f [number] splits each line by tabs, takes the numberth field after

splitting, and prints that to the output stream.
b.​ Fields start at 1, so if you wanted just the text from the csvs we made in class

with text in the third column, that would be done with cut -f 3
c.​ if your file has delimiters besides tabs, you can use -d ‘[other delimiter]’ to specify

the correct delimiter
d.​ has some other uses and ways to specify ranges of fields - check out the man

page

18.​ sort
a.​ sort puts the lines in lexicographic order
b.​ Other orders can be used, check out the man page

19.​ uniq
a.​ uniq filters lines to only those that are not direct copies of the line preceding

them
b.​ This doesn’t filter out lines that appeared somewhere earlier in the file and is thus

often paired with sort

https://en.wikipedia.org/wiki/Lexicographical_order

c.​ uniq -c gives you tab-separated counts preceding each line of how many
times it appeared in a row in that location

20.​ wc
a.​ wc count things across all lines of a file
b.​ wc -l counts lines, wc -w counts words
c.​ check out the man page for fun usage

Heavy-duty text tools

21.​ grep
a.​ Comes from an old and common ed command formatted g/re/p (global /

regular expression / print)
b.​ grep [text] will return all the lines in the specified path
c.​ Useful flags:

i.​ -v: return any lines that don’t contain text
ii.​ -c: just return the count of lines that match
iii.​ -i: ignore case when searching
iv.​ --color: highlights the matched string with a color, default red

d.​ If you’re doing something complicated, you can use a regular expression with -G
or -E; go look on StackOverflow for examples or particular types of searches

e.​ Alternately, you can chain together grep commands
grep ‘cat’ *.txt | grep -v ‘dog’ returns all lines in text files in your current directory with ‘cat’
and not ‘dog’ in them

22.​ sed
a.​ Name comes from stream editor
b.​ In effect, a little programming language for describing transformations on a string
c.​ Most common one is replacement: sed s/[something]/[something

else]/ will replace the first instance of something in every line with something
else.

d.​ More tips on sophisticated use can be found at Sed: An Introduction and Tutorial
or on StackOverflow for particular operations

23.​ Chained commands
a.​ All these tools together can get you some crazy commands. Suppose I have a

file like the State of the Union Mallet-friendly with the year as the second column.
To find out how many years talk about “militia” from the 19th century, I can run​
grep militia sotu.txt | cut -f 2 | grep ‘^18’ | sort |
uniq | wc -l > count.txt​
which looks for lines with militia, takes out the year field, checks that it begins

http://www.grymoire.com/Unix/Sed.html

with 18, sorts them lexicographically, deduplicates repeating years, and then
counts the number of lines, saving that count as text in the file count.txt

Bonus material

24.​ nano
a.​ Basic text editor for use in the command line
b.​ Lists commands on the bottom of the screen, with ^ meaning the Control key
c.​ Most people using the command line a lot will eventually switch to vim or emacs,

but they take a bit of time to learn

25.​ micro
a.​ Slightly nicer basic editor on the command line with similar commands to nano

(e.g. ^Q = ctrl-Q = quit)
b.​ Alt-G summarizes editor tools, Ctrl-G opens more detailed help
c.​ Still definitely way friendlier than vim/emacs for learning curve
d.​ (thanks Prof. Bang for suggesting this!)

26.​ find
a.​ Searches for files in a directory of a certain name pattern
b.​ Useful if you’re lost in a complicated directory structure
c.​ Check out man for how to specify search depth and patterns

27.​ which
a.​ which [command] tells you where the code for that command is currently
b.​ Useful if you’re using multiple versions of Python in different places and want to

figure out which installation your computer thinks you’re using

28.​ alias
a.​ alias [command]=”[long command]” tells your shell that while it’s open, it

should treat typing command as if you’re typing long command.
b.​ Useful if you have lots of flags or long paths you need to use

i.​ e.g. if you have a special version of python you installed that’s not the
default, you could do alias mypython=”/path/to/python” and
then run mypython something.py to use it

ii.​ Alternately, if you have some weird directory you navigate to often but
takes a while you get to, you can do alias proj=”cd
/really/nasty/long/path”

c.​ Aliases are only remembered by that shell - look up .bashrc and .profile files for
information on how to make these always saved

29.​ ssh
a.​ Used to access one machine from another securely - secure shell
b.​ If you’re on Windows, you can do this with PuTTy to get to UNIX machines
c.​ Has corresponding commands for transmitting between machines (e.g. scp

copies files securely between machines)

	All About UNIX
	Introduction
	1.​What is UNIX? What is a CLI?
	2.​History of UNIX
	3.​Strengths of UNIX

	Moving around
	4.​ls
	5.​man
	6.​Structure of a command
	7.​cd and paths
	8.​tab completion
	9.​Regular expressions
	10.​mv and cp
	11.​rm
	12.​Interrupts

	Stream basics
	13.​the stream
	14.​cat
	15.​echo

	Stream-friendly commands
	16.​head and tail
	17.​cut
	18.​sort
	19.​uniq
	20.​wc

	Heavy-duty text tools
	21.​grep
	22.​sed
	23.​Chained commands

	Bonus material
	24.​nano
	25.​micro
	26.​find
	27.​which
	28.​alias
	29.​ssh

