ПЛАН ЗАНЯТИЯ

Дата <u>11.09.2023.</u> Группа: XKM 3/1. Курс: 3

Дисциплина: Электротехника и основы электроники

Специальность: 15.02.06 «Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок (по отраслям)»

Тема занятия: Определение мощности и выбор электродвигателя для компрессора

Цель занятия:

- -методическая совершенствование методики проведения практического занятия;
 - учебная знать общие понятия об электрооборудовании холодильных машин.;
 - воспитательная обучать учащихся соотносить полученные знания с наблюдаемыми явлениями.

Вид занятия: Практическое занятие

Форма проведения занятия:

Межпредметные связи:

Обеспечивающие: Техническая механика, Физика

Обеспечиваемые: курсовое и дипломное проектирование

Рекомендуемая литература

Основная литература:

- 1.Б.И.Петленко. Электротехника и электроника. М.: «Академия»,. 2014.-319 с.
- 2.Ю.Г.Лапытин, В.Ф. Атарщиков. Контрольные материалы по электротехнике и электронике 2016

Дополнительная литература:

- 1. А.С.Касаткин., М.В.Немцов. Электротехника. М. : Издательский центр «Академия», 2015 г..
- 2. Прошин В.М. Лабораторно-практические работы по электротехнике. (2-е-изд., стер.) Уч.пос.НПО. «Академия», 2015-2016.

Тема: Определение мощности и выбор электродвигателя для компрессора **Цель:** Научиться определять мощность и выбирать электродвигатель для компрессора по заданным параметрам

Порядок расчета и выбора электродвигателя для компрессора

1. Рассчитывается холодопроизводительность q_0 (кДж/кг) 1 кг хладагента $q_0 = i'_1 - i_4$,

где q_0 — разность энтальпий конца и начала процесса кипения хладагента в испарительной системе.

2. Определяется массовый расход пара М (кг/с) по формуле:

$$M = \frac{Q_0}{Q_0}$$

где Q_0 — нагрузка на компрессор с учетом потерь, кВт.

3. Вычисляют теоретическую (адиабатную) мощность компрессора $N_T = M (i_2 - i_1),$

где i_2 — i_1 — разность энтальпий конца и начала процесса сжатия в компрессоре.

Приведенные энтальпии определяются по таблицам параметров циклов холодильных машин.

4. Определяется действительная (индикаторная) мощность компрессора N_i (кВт)

$$N_i = \frac{N_T}{\eta_i},$$

где $\acute{\eta}_i$ — индикаторный КПД.

Для бескрейцкопфных компрессоров индикаторный КПД можно принимать $0,79 \div 0,84$. Большие значения коэффициента относятся к более крупным компрессорам. Для малых, средних компрессоров, работающих на хладонах, индикаторный КПД можно принимать от $0,65 \div 0,8$.

5. Рассчитывают эффективную мощность N_e (кВт) на валу компрессора.

$$N_e = \frac{N_i}{\eta_M}$$

где $\acute{\eta}_{\mbox{\tiny M}}$ — (механический КПД, учитывающий потери на трение.

Для крупных бескрейцкопфных компрессоров механический КПД можно принимать от $0.82 \div 0.92$; для малых и средних компрессоров, работающих на хладонах, — от $0.84 \div 0.97$; причем, большие значения коэффициентов относятся к более крупным машинам.

Эффективная мощность N_e равна мощности электропривода P_κ ,

6. По мощности P_{κ} подбирают электродвигатель компрессора с запасом мощности 10—15%.

Следует учесть, что электротехническая промышленность выпускает асинхронные двигатели серии 4A (табл. 1) взамен A2 и AO2. Обозначение типа электродвигателя расшифровывается так: 4 — порядковый номер серии; A — асинхронный; P — двигатель с повышенным пусковым моментом; число после буквенного обозначения показывает высоту оси вращения В мм; буквы S, M, L, A, B — установочные размеры по длине корпуса; цифра после этого — число полюсов; буква У — климатическое исполнение (умеренный климат); последняя цифра — категория размещения: 1 — Для работы на открытом воздухе; 3 — для закрытых неотапливаемых помещений.

Выбор частоты вращения двигателя определяется типом передачи, частотой вращения вала компрессора и конструкцией агрегата. Соединение двигателя с компрессором желательно без передачи.

Если частоты вращения двигателя и вала компрессора не совпадают, допустимо применение клиноременной передачи. Рекомендуемое передаточное число находится в пределах 2—3.

В заключение определяется величина минимального допустимого напряжения, при котором агрегат может быть пущен в ход. Формула расчета этого напряжения имеет вид:

$$U_{\text{доп}} = \sqrt{\frac{P_{\text{K}}/P_{\text{H}} + 0.1}{0.8 \cdot K_{\text{H}}}} \cdot 100,$$

где $U_{\text{доп}}$ —допустимое напряжение (в % от номинального);

 $P_{_{\rm H}}$ — номинальная мощность двигателя, кВт;

 P_{κ} —эффективная мощность на валу компрессора, кВт;

К_п — кратность пускового момента;

$$K_{\Pi} = \frac{M_{\text{пуск.}}}{M_{\text{H}}}$$

Расчет этого напряжения обусловлен следующим обстоятельством.

Момент на валу асинхронного двигателя пропорционален квадрату напряжения. Таким образом, даже небольшое понижение напряжения в момент пуска резко снижает пусковой момент m^3/c .

В тех случаях, когда питающая сеть недостаточно мощна и снижение напряжения при пуске может оказаться превышающим расчетную величину минимального допустимого напряжения, следует производить пуск при разгруженном компрессоре, либо применить двигатель с фазным ротором.

Данные для расчета взять из таблицы 2

Таблица 1- Технические данные некоторых асинхронных двигателей с короткозамкнутым ротором серии A4 (закрытое обдуваемое место)

Chopothosamic	, 			<u> </u>		 	
Тип двигателя	Р _{ном} кВт	<i>п</i> об/ мн	ή %	co s φ	$I_{\underline{\text{nyck}}}$ I_{hom}	M_{HOM}	$M_{_{ m HOM}}$
4А63В2У3	0,5	2740	73	0,86	4,5	2,0	2,2
4А71А2У3	0,7	2840	77	0,87	5,5	2,0	2,2
4А71В2У3	1,1	2810	77,5	0,87	5,5	2,0	2,2
4А80А2У3	1,5	2850	81	0,85	6,5	2,1	2,6
4А80В2У3	2,2	2850	83	0,87	6,5	2,1	2,6
4A90L2У3	3,0	2850	84,5	0,88	6,5	2,1	2,5
4А100Ѕ2У3	4,0	2880	86,5	0,89	7,5	1,2	2,2
4А100Ѕ2У3	5,5	2880	87,5	0,92	7,5	1,2	2,2
4А71А4У3	0,5	1390	70,5	0,7	4,5	2,0	2,2
4А71В4У3	0,7	1390	72,0	0,73	4,5	2,0	2,2
4А80А4У3	1,1	1420	75,0	0,81	5,0	2,0	2,2
4А80В4У3	1,5	1415	77,0	0,83	5,0	2,0	2,2
4A90L4У3	2,2	1425	80,0	0,83	6,0	2,1	2,4
4А100Ѕ4У3	3,0	1435	82,0	0,83	6,0	2,0	2,4
4A100L4Y3	4,0	1430	84,0	0,84	6,0	2,0	2,4
4A112M4Y3	5,5	1445	85,5	0,85	7,0	2,0	2,2
4A132S4У3	7,5	1455	87,5	0,86	7,5	2,2	3,0
4А132М4У3	11,0	1460	87,5	0,87	7,5	2,2	3,0
4AP160S4У3	15,0	1465	86,5	0,83	7,5	2,0	2,2
4AP160M4Y3	18,5	1465	88,5	0,87	7,5	2,0	2,2
4AP180S4У3	22	1460	89,0	0,87	7,5	2,0	2,2
4AP180M4Y3	30	1460	90.0	0,87	7,5	2,0	2,2
4А200М4У3	37	1460	90,0	0,87	7,5	1,2	2,0

^{7.} Выбрать двигатель и сделать расшифровку

8. Выводы

Варианты заданий

No	ФИО	Задание
1	Акатов	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 90.7 \text{ кВт, температура кипения to} = -15$
		°C, температурой конденсации tк = 30 °C, число оборотов вала
		компрессора η = 1450 об/мин, компресор П80 (хладагент аммиак)
2	Бемещук	Подобрать электродвигатель к компрессору с
	·	холодопроизводительностью $Q = 62.8 \text{ кВт}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора η = 1450 об/мин, компресор ПБ60 (хладагент R22)
3	Заступайло	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 84.9 \text{ кBT}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора η = 1450 об/мин, компресор ПБ80 (хладагент R22)
4	Корниенко	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 62.8 \text{ кBT}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор ПБ40 (хладагент R22)
5	Козенко	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 68.0 \text{ кBT}$, температура кипения to = -15
		°C, температурой конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор $\Pi60$ (хладагент аммиак)
6	Литвиненко	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 45.5 \text{ кВт}$, температура кипения to = -15
		°C, температурой конденсации tк = 30 °C, число оборотов вала
<u> </u>	—	компрессора $\eta = 1450$ об/мин, компресор $\Pi 40$ (хладагент аммиак)
7	Прокопенко	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 90.7 \text{ кВт, температура кипения to} = -15$
		°C, температурой конденсации tк = 30 °C, число оборотов вала
0	Comercia	компрессора η = 1450 об/мин, компресор П80 (хладагент аммиак)
8	Скрыпник	Подобрать электродвигатель к компрессору с холодопроизводительностью $Q = 62.8 \text{ kBt}$, температура кипения to = -15
		°C, температура конденсации tk = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор ПБ60 (хладагент R22)
9	Сташенко	Подобрать электродвигатель к компрессору с
	Стащенко	холодопроизводительностью $Q = 84.9 \text{ kBt}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор ПБ80 (хладагент R22)
10	Таран	Подобрать электродвигатель к компрессору с
	·· r · ·	холодопроизводительностью $Q = 62.8 \text{ кВт}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор ПБ40 (хладагент R22)
11	Чиркин	Подобрать электродвигатель к компрессору с
	-	холодопроизводительностью $Q = 68.0 \text{ кВт, температура кипения to} = -15$
		°C, температурой конденсации tк = 30 °C, число оборотов вала
		компрессора η = 1450 об/мин, компресор П60 (хладагент аммиак)
12	Юрьев	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 45.5 \text{ кBT}$, температура кипения to = -15
		°C, температурой конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор $\Pi 40$ (хладагент аммиак)

13	Тимченко	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 62.8 \text{ кBT}$, температура кипения to = -15
		°C, температура конденсации tк = 30 °C, число оборотов вала
		компрессора $\eta = 1450$ об/мин, компресор ПБ40 (хладагент R22)
14	Бугрым	Подобрать электродвигатель к компрессору с
		холодопроизводительностью $Q = 68.0 \text{ кBT}$, температура кипения to = -15
		1
		°C, температурой конденсации tк = 30 °C, число оборотов вала

Контрольные вопросы

- 1. Для чего применяется компрессор?
- 2. Как классифицируются компрессоры по принципу действия?
- 3. Какими способами регулируется производительность компрессорной установки?

Задание для самостоятельной работы:

- 1. Выполнить практическую работу
- 2. Письменно ответить на контрольные вопросы
- 3.Фотографию практической работы прислать в личном сообщении BK https://vk.com/id139705283

На фотографии вверху должна быть фамилия, дата выдачи задания, группа, дисциплина. Например: «Иванов И.И, **11.09.2023,** группа ХКМ 3/1 «Электротехника и основы электроники»