
EY Data Integration App — Technical
Documentation

1) Purpose & Scope

This document explains how our app identifies tables/fields, creates a unified schema, transforms raw
data, merges records, and produces audit-ready outputs. It’s written so a new engineer can reproduce
results end-to-end and so reviewers can trace every decision the system makes. It’s aligned to EY’s
challenge brief and the documentation criteria (clarity, replicability, scalability).

2) System Overview

Inputs

●​ Schema files: Bank1_Schema.xlsx, Bank2_Schema.xlsx​

●​ Data files: Bank1_Data.*, Bank2_Data.* (Excel/CSV; multiple tabs like
Customers/Accounts/Transactions)​

●​ Model: sentence-transformers/all-MiniLM-L6-v2 (for semantic similarity)​

●​ Config: CONF_THRESHOLD=73.0 (confidence gate for “Confident Match”)​

High-level workflow

1.​ Upload & classification (frontend → backend)​

2.​ Parse schemas → JSON​

3.​ AI mapping (semantic similarity)​

4.​ Raw data ingestion (adds bank_origin)​

5.​ Transform to unified schema (rename, types, formats)​

6.​ Merge + conflict resolution​

3) Field & Table Identification — How It Works

3.1 Table name mapping (BankB → BankA)

Goal: normalize table names in BankB to BankA’s names.

Process implemented in your code:

●​ Read two schema JSONs (FILE1, FILE2).​

●​ Encode table names with Sentence-BERT; compute cosine similarity.​

●​ Convert each similarity row to a confidence rating.​

●​ Decision rule: if confidence ≥ CONF_THRESHOLD (73%) ⇒ Confident Match; else Needs
Review.​

●​ Build rename_dict for all confident table pairs and rename BankB tables accordingly.​

●​ Persist:​

○​ bank2_renamed_schema.json (BankB schema with renamed tables)​

○​ table_name_mapping.json (each BankB table, its best BankA match, similarity,
confidence, status)​

Why this is transparent: every table pair is recorded with similarity & confidence; reviewers can spot
low-confidence links quickly and override.

3.2 File-to-logical table inference (manifest builder)

Goal: connect actual data files (Excel/CSV) to logical tables determined above.

Process (your code):

●​ Load Table_name_mapping.json and keep only “Confident Match” entries.​

●​ Normalize names (lower(), remove spaces/underscores).​

●​ For each file in /BankA and /BankB, infer the logical table by checking if the cleaned filename
contains the cleaned canonical table token.​

Produce merge_manifest.json:​
​
 {
 "Customers": [
 { "source": "BankA/testing/BankA_Customers.xlsx", "bank": "BankA" },
 { "source": "BankB/testing/BankB_ClientList.xlsx", "bank": "BankB" }
],
 "Accounts": [...]
}

Why this is transparent: the manifest explicitly lists which raw file contributes to which logical
(unified) table.

3.3 Field-level mapping (Stage 3 in workflow)

Beyond table names, the field identification uses the same semantic approach at the column level:

●​ Build field strings (name + type + description + sample).​

●​ Encode BankA fields and BankB fields, compute cosine similarity.​

●​ For each BankA field, choose best BankB field; attach confidence.​

●​ Construct a Unified Schema with unified_field and mappedFrom pairs (plus confidence).​
 (That’s how we justify each column rename/type alignment in Stage 5.)​

Deliverables for auditors

●​ Table_name_mapping.json​

●​ Field_name_mapping.json (same structure as table mapping, but for columns)​

●​ Unified_Schema.json (canonical names, types, examples, lineage)​

4) Transformation & Merge — Reproducible and Deterministic

4.1 Raw data ingestion (Stage 4)

●​ Load every sheet/CSV → pandas DataFrame.​

●​ Add bank_origin = BankA or BankB.​

●​ Write each to SQLite with unique names like BankA_<file>_<sheet>.​
 (Exactly as in your script; logs list rows loaded per table.)​

4.2 Transform to Unified Schema (Stage 5)

For each logical table group from merge_manifest.json:

1.​ Rename columns using Field_name_mapping.json (BankA and BankB → unified names).​

2.​ Standardize types:​

○​ to_datetime for dates; define YYYY-MM-DD output.​

○​ Numeric coercion for amounts; normalize currencies to CAD (if applicable).​

3.​ Normalize formats:​

○​ Trim whitespace; normalize casing for codes (e.g., str.upper()).​

○​ Normalize identifiers (CustomerID, account numbers) to canonical patterns.​

The doc recommends a single transform_unified.py that:

●​ reads the manifest,​

●​ loads per-source tables,​

●​ applies per-column transforms driven by Unified_Schema.json rules,​

●​ writes canonicalized DataFrames (e.g., Unified_Customers_staged).​

(Your current script has these steps scaffolded; uncomment/expand the “STEP 4: Auto-merge” portion
and swap “shared column intersection” for explicit rename via field mappings.)

4.3 Merge & conflict resolution (Stage 6)

●​ Append BankA + BankB unified DataFrames (same columns).​

●​ Duplicate detection:​

1.​ Exact duplicate rows ⇒ keep one.​

2.​ Same key (CustomerID) with differing values ⇒ conflict.​

●​ Resolution rules (configurable):​

1.​ Prefer non-null values.​

2.​ If still conflict ⇒ BankA overrides BankB (or “most recent by timestamp”).​

3.​ Otherwise flag for manual review.​

●​ Log every conflict to Conflicts table with full lineage (table, record_id, field, bankA_value,
bankB_value, decision).​

5) Outputs & Artifacts (What reviewers will see)

●​ Table_name_mapping.json — semantic matches, similarity, confidence, status.​

●​ Field_name_mapping.json — per-column matches, confidence, status.​

●​ Unified_Schema.json — canonical fields: name, type, format, description, source lineage.​

●​ merge_manifest.json — raw files grouped by logical table with bank label.​

●​ merged_banks.db — SQLite DB with raw-loaded tables + unified tables.​

●​ manifest.json — run manifest (timestamp, tables loaded, merge summary, skips, errors).​
​

6) Reproducibility — How to Run Locally

Prereqs: Python 3.10+, pandas, sqlite3, sentence-transformers, torch.

1.​ Generate schema JSONs (Stage 2):​
 parse_schemas.py → outputs Bank1_Schema.json, Bank2_Schema.json.​

2.​ Run table mapping & rename (your first script):​

○​ Set FILE1, FILE2, CONF_THRESHOLD.​

○​ Outputs Bank2_Renamed_Schema.json, Table_name_mapping.json.​

3.​ Generate field mappings (Stage 3):​
 map_fields.py → outputs Field_name_mapping.json, Unified_Schema.json. (Same embedding
approach, field-level.)​

4.​ Build merge manifest (your second script):​
 Runs over /BankA and /BankB directories → outputs merge_manifest.json.​

5.​ Ingest and merge (your third script; Stage 4–7):​

○​ Loads raw files into merged_banks.db.​

○​ Apply transforms (enable the section to rename columns using
Field_name_mapping.json).​

○​ Merge, log conflicts, write unified tables.​

○​ Writes manifest.json.​

6.​ Export & report (Stage 9):​
 export_and_report.py → CSV/Excel/JSON exports + PDF report with mappings, confidences,
conflicts, KPIs.​

7) Scaling Guidelines (So it’s easy to replicate & scale)

●​ Storage: switch SQLite → DuckDB (single-file analytics at scale) or Postgres (multi-user).​

●​ Embedding speed: batch encode; cache embeddings per schema version; consider FAISS/Annoy
for faster nearest-neighbor.​

●​ Bigger models: allow MODEL_NAME override (e.g., all-MiniLM-L12-v2, bge-small-en).​

●​ Throughput: parallelize file ingestion and per-table transforms with multiprocessing.​

●​ Observability: structured logging (JSON), run IDs, and per-artifact checksums.​

●​ Config: externalize thresholds & rules (conf.toml), incl. conflict strategies per field.​

●​ Data quality rules: add a declarative ruleset (nullability, regex for IDs, currency/unit
normalization).​

●​ Human-in-the-loop: a UI to review “Needs Review” mappings and approve overrides (stored in
Mappings_Overrides).​

8) Data Lineage & Auditability

●​ Every mapping is explainable: we emit the similarity score, softmax confidence, and decision
status.​

●​ Every record logs its origin via bank_origin and can be traced back through merge_manifest.json.​

●​ Every conflict records inputs and chosen resolution in Conflicts.​

●​ The Integration Report consolidates this for non-technical reviewers.​

9) Edge Cases & How We Handle Them

●​ One-to-many fields (e.g., BankB has FirstName/LastName, BankA has FullName)​
 → rule-based compose/decompose during transform; document mapping notes in
Unified_Schema.json.​

●​ Units/currencies​
 → convert to canonical units (e.g., CAD) with explicit conversion logs.​

●​ Low-confidence matches​
 → keep status = “Needs Review”, never auto-rename; surface in UI/report.​

●​ Unexpected files/tabs​
 → logged in manifest.json as “skipped/unsupported” with reason.​

10) Folder & Artifact Layout (suggested)
/project
 /BankA # raw files
 /BankB
 /schemas # parsed schema JSONs
 /mappings # Table_name_mapping.json, Field_name_mapping.json, Unified_Schema.json
 /artifacts # merge_manifest.json, manifest.json, IntegrationReport.pdf
 /db # merged_banks.db
 /scripts # parse_schemas.py, map_fields.py, transform_unified.py, export_and_report.py
 /config # conf.toml (thresholds, conflict rules, formats)
 README.md # quickstart + runbook​

	EY Data Integration App — Technical Documentation
	1) Purpose & Scope
	2) System Overview
	Inputs
	High-level workflow

	3) Field & Table Identification — How It Works
	3.1 Table name mapping (BankB → BankA)
	3.2 File-to-logical table inference (manifest builder)
	3.3 Field-level mapping (Stage 3 in workflow)

	4) Transformation & Merge — Reproducible and Deterministic
	4.1 Raw data ingestion (Stage 4)
	4.2 Transform to Unified Schema (Stage 5)
	4.3 Merge & conflict resolution (Stage 6)

	5) Outputs & Artifacts (What reviewers will see)
	6) Reproducibility — How to Run Locally
	7) Scaling Guidelines (So it’s easy to replicate & scale)
	8) Data Lineage & Auditability
	9) Edge Cases & How We Handle Them
	10) Folder & Artifact Layout (suggested)

