EY Data Integration App — Technical
Documentation

1) Purpose & Scope

This document explains how our app identifies tables/fields, creates a unified schema, transforms raw
data, merges records, and produces audit-ready outputs. It’s written so a new engineer can reproduce
results end-to-end and so reviewers can trace every decision the system makes. It’s aligned to EY’s
challenge brief and the documentation criteria (clarity, replicability, scalability).

2) System Overview

Inputs

e Schema files: Bankl Schema.xlsx, Bank2 Schema.xIsx

e Data files: Bankl Data.*, Bank2 Data.* (Excel/CSV; multiple tabs like
Customers/Accounts/Transactions)

e Model: sentence-transformers/all-MiniLM-L6-v2 (for semantic similarity)

e Config: CONF THRESHOLD=73.0 (confidence gate for “Confident Match”)

High-level workflow

1. Upload & classification (frontend — backend)
2. Parse schemas — JSON

3. Al mapping (semantic similarity)

4. Raw data ingestion (adds bank origin)

5. Transform to unified schema (rename, types, formats)

6. Merge + conflict resolution

3) Field & Table Identification — How It Works

3.1 Table name mapping (BankB — BankA)
Goal: normalize table names in BankB to BankA’s names.
Process implemented in your code:

e Read two schema JSONs (FILEL, FILE2).
e Encode table names with Sentence-BERT; compute cosine similarity.
e Convert each similarity row to a confidence rating.

e Decision rule: if confidence > CONF _THRESHOLD (73%) = Confident Match; else Needs
Review.

e Build rename_dict for all confident table pairs and rename BankB tables accordingly.
e Persist:
o bank2 renamed schema.json (BankB schema with renamed tables)

o table name mapping.json (each BankB table, its best BankA match, similarity,
confidence, status)

Why this is transparent: every table pair is recorded with similarity & confidence; reviewers can spot
low-confidence links quickly and override.

3.2 File-to-logical table inference (manifest builder)
Goal: connect actual data files (Excel/CSV) to logical tables determined above.
Process (your code):

e [Load Table name mapping.json and keep only “Confident Match” entries.

e Normalize names (lower(), remove spaces/underscores).

e For each file in /BankA and /BankB, infer the logical table by checking if the cleaned filename
contains the cleaned canonical table token.

Produce merge manifest.json:

{

"Customers": [
{ "source": "BankA/testing/BankA Customers.xIsx", "bank": "BankA" },
{ "source": "BankB/testing/BankB_ClientList.xlsx", "bank": "BankB" }

1,

"Accounts": [...]

}

Why this is transparent: the manifest explicitly lists which raw file contributes to which logical
(unified) table.

3.3 Field-level mapping (Stage 3 in workflow)
Beyond table names, the field identification uses the same semantic approach at the column level:

e Build field strings (name + type + description + sample).
e Encode BankA fields and BankB fields, compute cosine similarity.
e For each BankA field, choose best BankB field; attach confidence.

e Construct a Unified Schema with unified field and mappedFrom pairs (plus confidence).
(That’s how we justify each column rename/type alignment in Stage 5.)

Deliverables for auditors
e Table name mapping.json
e Field name mapping.json (same structure as table mapping, but for columns)

e Unified Schema.json (canonical names, types, examples, lineage)

4) Transformation & Merge — Reproducible and Deterministic

4.1 Raw data ingestion (Stage 4)

e Load every sheet/CSV — pandas DataFrame.
e Add bank origin = BankA or BankB.
e Write each to SQLite with unique names like BankA <file> <sheet>.

(Exactly as in your script; logs list rows loaded per table.)

4.2 Transform to Unified Schema (Stage 5)

For each logical table group from merge manifest.json:

1. Rename columns using Field name mapping.json (BankA and BankB — unified names).
2. Standardize types:

o to_datetime for dates; define YYYY-MM-DD output.

o Numeric coercion for amounts; normalize currencies to CAD (if applicable).
3. Normalize formats:

o Trim whitespace; normalize casing for codes (e.g., str.upper()).

o Normalize identifiers (CustomerlD, account numbers) to canonical patterns.

The doc recommends a single transform_unified.py that:

e reads the manifest,
e loads per-source tables,
e applies per-column transforms driven by Unified Schema.json rules,

e writes canonicalized DataFrames (e.g., Unified Customers staged).

(Your current script has these steps scaffolded; uncomment/expand the “STEP 4: Auto-merge” portion
and swap “shared column intersection” for explicit rename via field mappings.)

4.3 Merge & conflict resolution (Stage 6)

e Append BankA + BankB unified DataFrames (same columns).
e Duplicate detection:
1. Exact duplicate rows = keep one.
2. Same key (CustomerID) with differing values = conflict.
e Resolution rules (configurable):
1. Prefer non-null values.
2. [Ifstill conflict = BankA overrides BankB (or “most recent by timestamp”).
3. Otherwise flag for manual review.

e Log every conflict to Conflicts table with full lineage (table, record id, field, bankA value,
bankB_value, decision).

5) Outputs & Artifacts (What reviewers will see)

e Table name mapping.json — semantic matches, similarity, confidence, status.

e Field name mapping.json — per-column matches, confidence, status.

e Unified Schema.json — canonical fields: name, type, format, description, source lineage.
e merge manifest.json — raw files grouped by logical table with bank label.

e merged banks.db — SQLite DB with raw-loaded tables + unified tables.

e manifest.json — run manifest (timestamp, tables loaded, merge summary, skips, errors).

6) Reproducibility — How to Run Locally

Prereqs: Python 3.10+, pandas, sqlite3, sentence-transformers, torch.

-_—

Generate schema JSONs (Stage 2):
parse_schemas.py — outputs Bankl Schema.json, Bank2 Schema.json.

2. Run table mapping & rename (your first script):
o Set FILE1, FILE2, CONF_THRESHOLD.
o Outputs Bank2 Renamed Schema.json, Table name mapping.json.
3. Generate field mappings (Stage 3):
map_fields.py — outputs Field name mapping.json, Unified Schema.json. (Same embedding

approach, field-level.)

4. Build merge manifest (your second script):
Runs over /BankA and /BankB directories — outputs merge manifest.json.

5. Ingest and merge (your third script; Stage 4-7):
o Loads raw files into merged banks.db.

o Apply transforms (enable the section to rename columns using
Field name mapping.json).

o Merge, log conflicts, write unified tables.
o Writes manifest.json.
6. Export & report (Stage 9):

export_and_report.py — CSV/Excel/JSON exports + PDF report with mappings, confidences,
conflicts, KPlIs.

7) Scaling Guidelines (So it’s easy to replicate & scale)
e Storage: switch SQLite — DuckDB (single-file analytics at scale) or Postgres (multi-user).

e Embedding speed: batch encode; cache embeddings per schema version; consider FAISS/Annoy
for faster nearest-neighbor.

e Bigger models: allow MODEL NAME override (e.g., all-MiniLM-L12-v2, bge-small-en).
e Throughput: parallelize file ingestion and per-table transforms with multiprocessing.

e Observability: structured logging (JSON), run IDs, and per-artifact checksums.

e Config: externalize thresholds & rules (conf.toml), incl. conflict strategies per field.

e Data quality rules: add a declarative ruleset (nullability, regex for IDs, currency/unit
normalization).

e Human-in-the-loop: a Ul to review “Needs Review” mappings and approve overrides (stored in
Mappings Overrides).

8) Data Lineage & Auditability

e Every mapping is explainable: we emit the similarity score, softmax confidence, and decision
status.

e Every record logs its origin via bank origin and can be traced back through merge manifest.json.
e Every conflict records inputs and chosen resolution in Conflicts.

e The Integration Report consolidates this for non-technical reviewers.

9) Edge Cases & How We Handle Them

e One-to-many fields (e.g., BankB has FirstName/LastName, BankA has FullName)
— rule-based compose/decompose during transform; document mapping notes in
Unified Schema.json.

e Units/currencies
— convert to canonical units (e.g., CAD) with explicit conversion logs.

e Low-confidence matches
— keep status = “Needs Review”, never auto-rename; surface in Ul/report.

o Unexpected files/tabs
— logged in manifest.json as “skipped/unsupported” with reason.

10) Folder & Artifact Layout (suggested)

/project
/BankA # raw files
/BankB
/schemas # parsed schema JSONs
/mappings # Table name mapping.json, Field name mapping.json, Unified Schema.json
/artifacts # merge manifest.json, manifest.json, IntegrationReport.pdf
/db # merged banks.db
/scripts # parse_schemas.py, map_fields.py, transform_unified.py, export_and_report.py
/config # conf.toml (thresholds, conflict rules, formats)

README.md # quickstart + runbook

	EY Data Integration App — Technical Documentation
	1) Purpose & Scope
	2) System Overview
	Inputs
	High-level workflow

	3) Field & Table Identification — How It Works
	3.1 Table name mapping (BankB → BankA)
	3.2 File-to-logical table inference (manifest builder)
	3.3 Field-level mapping (Stage 3 in workflow)

	4) Transformation & Merge — Reproducible and Deterministic
	4.1 Raw data ingestion (Stage 4)
	4.2 Transform to Unified Schema (Stage 5)
	4.3 Merge & conflict resolution (Stage 6)

	5) Outputs & Artifacts (What reviewers will see)
	6) Reproducibility — How to Run Locally
	7) Scaling Guidelines (So it’s easy to replicate & scale)
	8) Data Lineage & Auditability
	9) Edge Cases & How We Handle Them
	10) Folder & Artifact Layout (suggested)

