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Similarity 

Grounding Similarity in Music.  

●​ We are interested in “similarity in music”, which stands behind almost any attempt 
to explain style (which is about what works of a certain “sound” share at the 
highest level), genre (which binds pieces by purpose or pattern) and borrowing 
(when one piece quotes, reworks, or otherwise borrows from another specific 
piece).  Even our attempts to show how a single piece holds together (or not) 
hinges on our capacity to show how its motives, harmonies, or gestures are 
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“similar” or “not.”  Musicologists have long been concerned with these questions, 
but how can machines be used to advance such work?  Can they show us more 
about . .  

Match Model with Derivative.  

○​ This is our corpus’ primary information: each of its Masses was created in 
‘direct reference’ to one pre-existent model. Any machine we create should 
first be able to master the basic task of telling us which model goes with 
with derivative. 

Ranking Similarity.   

○​ Can we find degrees of similarity among pieces? Aside from those pieces 
bound by explicit Model-Derivative, what would subsequent degrees of 
similarity look like?  

■​ Similar soggetti (certain melodic-rhythmic patterns)?  Can these be 
found via HumDrum or similar tools?  Via some direct search of MEI?  
Via some search of tokenized MEI? 

■​ Similar counterpoint (certain interval patterns, or ‘interlocks’).  See 
Three-Grams noted below.  These could be found in the MEI, or 
some representation of it. 

■​ Similar presentation types (via metadata, the time or intervals of 
entry) 

■​ Similar procedures (via relationship type metadata; pieces that share 
some habits of quotation, transformation, etc). 

■​ Economy and Consumption.  How much of a model is used?  How 
much of a derivative is new or borrowed? These would also tell us 
something about how works are like each other?  Perhaps this 
would also include some measure of where the borrowed material 
appears in each piece (example: some mapping of borrowings 
according to beginning/middle/end of each piece). 

■​ The metadata would also tell us about similarity within and beyond a 
given piece: 

●​ Simply Identity:  The same EMA and same Metadata:  its the 
same passage, but only if the Derivative and Model are the 
same in all instances! 
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●​ Self Similarity:  Same Piece, Different EMA but the same 
Metadata:  these are similar passages in the same 
composition. 

●​ Exo Similarity:  Different pieces (and of course different EMA) 
but the same metadata.  These could be: 

○​ Model and Mass (that is, some example of borrowing) 

○​ Any Pair of pieces _not_ otherwise known to be Model 
and Mass.  These share some stylistic or proceduraly 
similarity! 

Specific Techniques and Tools. 

jSymbolic 

●​ Which could be applied as: 

○​ pieces as Bag-of-Notes (including the Movements of Masses as individual 
pieces in this case) 

○​ phrases as Bag-of-Notes (using CRIM Phrase data to segment the phrases, 
perhaps relying in information about words and rests in the melodies) 

○​ various other Bags such as date, place, genre of model, or genre of Mass 
Movement 

Network Graphs using CRIM metadata 

●​ examples such as DRB’s Network of PEns, based on sequences of time or melodic 
entries of voices.  others? 

●​ possibly networks of soggetti, based on tokenized representations of melodic and 
rhythmic motion 

Linguistic Tools and Bioinformatics Tools 

●​ such as Levenshtein Distances.  DRB has already experimented to show which 
Observations are most similar to each other, based on one such routine using 
tokenized representations of melodic intervals of entry. 

●​ now also see Janco music21 patterns; how to apply various ‘similarity’ measures to 
these? 

Pattern Finding 

●​ ELVIS technique of three-grams at the level of the minim involving modules of two 
voices. https://github.com/ELVIS-Project/vis-framework.   
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○​ Here they represent a fundamental motion in a lower part by (a ‘vector’ of 
movement up or down by diatonic interval X) surmounted by a pair of 
vertical harmonic intervals (for instance a sixth followed by a third).  This 
‘triad’ represents the basic element of contrapuntal motion.  Any 
succession of voices can be represented as an interlocking chain of such 
three-grams. Julie Cumming can put us in touch with students who know 
the system 

Janco music21 patterns and n-grams  

●​ Notebook with all Code 

●​ Archive of pre-Slack Correspondence between RF and AJ 

●​ music21 and intervall patterns 

○​ We are using music21 to read the MEI and calculate intervals using 
notesToInterval.  This gives us an interval object with a name attribute.  For 
example, P5.  We are dropping the character and keeping the number. 

○​ All note-to-note intervals are represented by a number.  

■​ When the melodic interval is ascending the value is positive or 
negative for descending.  

■​ The numeric value is followed by a letter with the rhythmic interval 
between the notes.  L shows the duration of the second note is 
longer than the first.  S shows the duration of the second note was 
shorter.  And E notes that the duration of the two notes is equal.  
There are three types of intervals with rests in them.   

■​ An interval with a note followed by a rest has a melodic interval of 0.  
The same is true of a rest followed by a note.   

■​ An interval of two rests is R, followed by the rhythmic interval.  

○​ E to F is 2 
○​ F to E is -2 
○​ E to rest is 0 
○​ rest to E is 0 
○​ E (duration 4) to F  (duration 4)  is 2E  (Equal) 
○​ E (duration 4) to F (duration 8)  is  2L 
○​ E (duration 8) to F (duration 4)  is  2S  
○​ Rest to Rest is R  (with same system for rhythmic duration) 
○​ For example, the first four measures of Ave Maria [Superius] are:  
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●​ <note xml:id="m-64" dur="1" dur.ges="1024p" oct="4" pname="g" pnum="67" 
stem.dir="up"> 

●​ <note xml:id="m-65" dur="1" dur.ges="1024p" oct="5" pname="c" pnum="72" 
stem.dir="down"> 

●​ <note xml:id="m-83" dur="1" dur.ges="1024p" oct="5" pname="c" pnum="72" 
stem.dir="down" /> 

●​ <note xml:id="m-84" dur="1" dur.ges="1024p" oct="5" pname="c" pnum="72" 
stem.dir="down"> 

●​ <note xml:id="m-98" dur="1" dur.ges="1024p" oct="5" pname="d" pnum="74" 
stem.dir="down"> 

●​ <note xml:id="m-99" dur="1" dur.ges="1024p" oct="5" pname="e" pnum="76" 
stem.dir="down" /> 

●​ <note xml:id="m-118" dur="breve" dur.ges="2048p" oct="5" pname="c" pnum="72" 
stem.dir="down"> 

●​ <mRest xml:id="m-138" dur="breve" /> 

 

start start_duration start_id end end_duration end_id interval 

G 4 m-64 C 8 m-64/m-65 4L 

C 8 m-64/m-65 C 4 m-84 1S 

C 4 m-84 D 4 m-98 2E 

D 4 m-98 E 4 m-99 2E 

E 4 m-99 C 8 m-118 -3L 

C 8 m-118 rest 8 m-138 0E 

 

●​ These intervals can then be used as an array: ['4L', '1S', '2E', '2E', '-3L', '0E'] 
●​ Here is a list of all intervals in the CRIM corpus: crim_intervals.csv 

 

5 

https://haverford.box.com/s/hy994kx1mquqyuy2am2s43xtse9142if


Experiment 1: “N-grams”  

In natural language processing and computational linguistics, n-grams are a 
common tool for the study of text.  An n-gram is a segmentation of the text into 
units of size n.  We could take “Ave Maria” for example.  Each character in the 
string is a  1-gram (unigram) including spaces and punctuation. In “Ave_Maria” we 
get 9 unigrams.    

We can also split the string into eight bigrams: 

Av, ve, e_, _M, Ma,ar,ri,ia 

or 3-grams: 

Ave, ve_,e_M,_Ma,Mar,ari,ria 

Up to a single 9-gram 

This same concept can be applied to the CRIM interval arrays: 

['4L', '1S', '2E', '2E', '-3L', '0E'] 

Interval sequence bigrams: 

['4L', '1S'],[‘1S '2E'],[‘2E’, '2E'], [‘2E’,'-3L'] [‘-3L’, '0E'] 

Interval sequence trigrams: 

['4L', '1S', '2E'], ['1S', '2E', '2E'], ['2E', '2E','-3L'],['2E','-3L','0E'] 

Interval sequence 4-grams 

['4L', '1S', '2E', '2E'],['1S', '2E', '2E','-3L'], ['2E', '2E','-3L', '0E'] 

With n-grams we are able to create a list of all of the patterns of various length 
that appear in the CRIM corpus,  It gives us a list of all existings patterns.  We can 
then count the occurance of each pattern in the corpus.   

Here is a link to a CSV of these patterns and their frequency in the corpus:  

crim_pattern_counts.csv 

The spreadsheet begins with sequence bigrams given that a single interval is not 
likely to be significant for identifying patterns across scores or parts.  The longest 
n-gram is a 101-gram that appears twice in the corpus.  All n-grams that appear 
less than twice were dropped.    
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Please note I have removed all-rest patterns from the list.  There are many places 
where a singer rests for 10 or 12 measures, but this is not an event of interest in 
the score.  

Similarity  

As an initial experiment, I tried using the n-grams as a measure of similarity 
between pieces.  For each part in each score, I create an intervals array.  I can 
then identify the n-grams present in the array.  It’s hardly a “fingerprint,” but it does 
give us a common unit of measure that can be compared across scores.  I have 
approached this as a set operation.  Each part has its own set of n-grams.  In 
theory, the union of two sets will be larger for similar scores and smaller in less 
similar scores.  I’m not thinking of this as an end result, but rather a way of sorting 
the pieces so that we can identify scores that are relatively more likely to be 
connected in some meaningful way.  How we assess that connection and identify 
its specific components is an open question.   

In addition to counting which n-grams are present in a part, I am counting the 
number of times that an n-gram appears in the part. This information could be 
used to improve our measure of similarity.  For example, two pieces are only 
similar when they share both an n-gram and a similar frequency of that n-gram. We 
could adjust the required count similarity as needed. I’d be happy to add this 
specificity if it would lead to improvement in our measure of similarity.   

One possible way forward is to create an n-gram search and visualization 
application. With a given interval n-gram or set of n-grams, we could identify 
similar scores and visualize them in such a way that a music scholar could 
interpret and make sense of the machine’s observations. It could be something 
like “auto-suggest” for CRIM observations.      

I have also been experimenting with Palladio as a way to investigate and interpret 
the data. Using a graph, for example, we can visualize which n-grams various 
scores have in common.  In the image below, we see six clusters of n-grams at the 
intersections of four scores (Sanctus, Ave Maria, Missa Baisez moy, and scores 
with no title).  If the intersections of scores lend useful information, we could try to 
use something like UpSetR to visualize them.  

Here is the sorted lists of parts by “similarity” 

Crim_ similarity.csv 

 

Experiment 2: Melodic “Phrases” 

Upon re-reading a message from Rich, I have shifted to try a different approach to 
segmenting the interval arrays. Rather than chopping them up into all possible 
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combinations, I am cutting them on the 0 intervals.  We then have a segment of 
melody that ends with a rest.     

Here is a link to my code for this “phrase” approach.   

Here is the resulting file, a list of the interval “phrases” as they appear in CRIM 
sorted by their frequency.  Note that each pattern is given a name for simplicity. 

Crim_phrase_patterns.csv 

A version of the same file, but without 1 intervals. Because repeated notes are 
often used to break up time to accommodate new syllables in a text.  And when 
composers borrow one melody for another text, they are forced to divide or 
combine notes. 

crim_phrase_patterns_no1s.csv 

 

Experiment 3: Quantized Phrases 

●​ Many times our melodies have various ornaments or passing tones.  What if we try 
to compare them using some grid of ‘structural’ tones as determined by some 
minimum duration.  That is: quantizing the melodies will abstract them, allowing us 
to compare the fundamental movement: 

●​ See music21 method quantize.  If we then test quantized melodies phrases using 
the approaches in Experiments 1 and 2, what are the results? 

●​ Would these abstractions necessarily lose their XML:IDs?  Could we preserve 
some other information about the location of these tunes relative to the source 
pieces?  Measure numbers as a range? (And then generate EMA with 
“1-10/@all/@all” addresses?) 

 

Experiment 4: Text Phrases 

●​ CRIM tells us where “first” and “last” bar in which any line of text is heard:  
http://crimproject.org/pieces/CRIM_Model_0001/.   

●​ These are also available as CRIM Phrases:  
http://crimproject.org/admin/crim/crimphrase/, which turn could in turn easily be 
rendered as EMA references to slice the relevant MEI.  The EMA for measures 1-10 
of a piece would be  “. . . .1-3/all/@all” 
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●​ We could use this as another way to segment CRIM MEI data (and thus avoid the 
problem of short or intermedial rests, and to allow for motives created by text 
repetition to be part of the story of similarity.   

●​ The text phrase method would also be of use in Experiment 5, below. 

 

AJ June 1 Notebook here 

With Music21, we can access the lyrics associated with any note in the score 
(note.lyric). As we calculate intervals, I have added a start_lyric and end_lyric field 
to the interval dictionaries.  We can then iterate over all of the intervals and use 
that information to splice the list into sequences based on the lyrics.  

This approach does present some trouble given that many of the lyric phrases 
have long sections where the melody changes, but the lyric does not. For example 
‘gra - - ti -a ple - - - - - na,” (measures 8-12, Ave Maria, [Superius]) Where the 
hyphens make the sustained lyric clear in the notation, in music21 we have [‘gra-’, 
None,’-ti-’,’-a’,’ple’. None x 5, ‘-na,’]   How can the machine know that a None in the 
sequence is not the end of the phrase? Looking at the page, these sustained 
melodies are still broken by rests. Borrowing from earlier work where we break on 
0 intervals, I look for an interval of 0 that has no lyrics. That is the end of the lyric 
phrase.  So whenever we have a start_lyric, we find the end of the phrase where 
start_lyric is None, end_lyric is None and there is a 0 interval. This seems to work, 
though it would be nice to be more deliberate in the logic.    

Slight update, I compared the note intervals to the lyric intervals.  The lyric 
intervals includes rest-rest intervals that were incorrect.  The lyric phrases ends 
before the rest-rest intervals.  I have now corrected the code and updated the 
results below:  

🎤 lyric: [('A-', '-ve'), ('Ma-', '-ri-'), ('-ri-', None), ('-a,', None)] (0, 6) 

🎵 notes: [('G', 'C'), ('C', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'C'), ('C', 'rest')] (0, 6) 

 

🎤 lyric: [('gra-', None), ('-ti-', '-a'), ('-a', 'ple-'), ('ple-', None), ('-na,', None)] (7, 18) 

🎵 notes: [('C', 'B'), ('B', 'A'), ('A', 'G'), ('G', 'A'), ('A', 'G'), ('G', 'C'), ('C', 'B'), ('B', 'A'), ('A', 'B'), 
('B', 'C'), ('C', 'rest')] (7, 18) 
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🎤 lyric: [('-mi-', '-nus'), ('-nus', 'te-'), ('te-', None), ('-cum,', None)] (20, 36) 

🎵 notes: [('C', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'C'), ('C', 'B'), ('B', 'A'), ('A', 'G'), ('G', 'F'), ('F', 'E'), 
('E', 'C'), ('C', 'B'), ('B', 'A'), ('A', 'G'), ('G', 'F'), ('F', 'E'), ('E', 'rest')] (20, 36) 

 

🎤 lyric: [('Vir-', '-go'), ('-go', 'se-'), ('se-', '-re-'), ('-re-', None), ('-na,', None)] (37, 43) 

🎵 notes: [('C', 'A'), ('A', 'G'), ('G', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'rest')] (37, 43) 

 

🎤 lyric: [('-re-', None), ('-na.]', None)] (46, 49) 

🎵 notes: [('C', 'B'), ('B', 'C'), ('C', 'rest')] (46, 49) 

 

🎤 lyric: [('A-', '-ve'), ('-ve', 'cae-'), ('cae-', '-lo-'), ('-lo-', '-rum'), ('-rum', 'Do-'), ('-mi-', '-na'), 
('-na', None)] (50, 60) 

🎵 notes: [('C', 'C'), ('C', 'D'), ('D', 'E'), ('E', 'E'), ('E', 'F'), ('F', 'E'), ('E', 'E'), ('E', 'D'), ('D', 'E'), 
('E', 'rest')] (50, 60) 

 

 

Experiment 5:  Contrapuntal Arrays 

●​ Can we begin go think about counterpoint?  One way would be to look at our 
melodic (and or rhythmic) motion in more than one voice at once. 

●​ Arrays could be based on Phrase data (which would capture musically meaningful 
combinations of contrapuntal lines).  Of course we know that some of the measure 
‘boundaries’ for phrases overlap, and so there will be some extra information in 
these phrases. But such overlaps will still make musical sense from the standpoint 
of counterpoint. 

●​ One melodic phrase might look like this:   

○​ ['0E', '2E', '2E', '2E', '0E'] 

●​ An “array” of contrapuntal lines might look like this: 
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○​ [['0E', '2E', '2E', '2E', '0E'], ['0E', '2E', '2E', 
'2E', '0E'],['0E', '2E', '2E', '2E', '0E'],['0E', 
'2E', '2E', '2E', '0E']] 

●​ Arrays could be tested for ‘similarity’ based on shared patterns of motion:  “-5” in 
the lowest part can only be accompanied by a limited number of intervallic 
distances in the parts above it. 

●​ Perhaps we could also use music21 to calculate the harmonic intervals among the 
voices (something like an intervallic array from the lowest voice to the highest) and 
sample these at some rate.  This would yield pieces that sound the same, as 
opposed to those that used the same motives in different ways. 

Experiment 6:  ELVIS Applied to Multivoice Pieces 

●​ McGill’s ELVIS system offers another interesting way to understand countrapuntal 
patterns between voices. It represents movement as a series of 3-grams: 

○​ for the lower voice:  the melodic distance from one note to the next 

○​ for upper voice:  the harmonic interval that this voice makes against each of 
the notes in the lower part 

○​ code here (but it needs work) Julie Cumming @ McGill has promised that 
students there can help 

●​ But how to run ELVIS against CRIM multivoice pieces?  A four voice piece would in 
fact involve multiple ELVIS streams of 3-grams, as we track the motion between 
S-A, S-T, S-B, A-T, A-B, T-B.  That is SIX ELVIS streams!  What do we do with the 
results?   

●​ Would it make sense to segment by CRIM Text Phrases?  Or? 

 

 

 

Results to date 

●​ 3-grams PNG 
●​ All NGrams (without segmentation by rest) 

 

Gould Notebooks June 9 Status Report 

●​ See Zoom Recording of AJ, RF, and FG conversation. 
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●​ Collaboratory now includes all features in one space: 
https://colab.research.google.com/drive/1ZB14nLwQgjbQ-udTfLskIiY70vs0vem6?u
sp=sharing 

○​ Parse MEI and music21 
■​ Main method gets as many MEI files as requested 
■​ Parses MEI as music21, returning lists of notes for each piece.  These 

are defined as ‘notes 1’ ‘notes 2’ etc. 
■​ It is also possible to define a range of measures, or a specific 

number of measures 
■​ >Score | Voice Part | Start Measure | Stop Measure 
■​ options for range: 

●​ specific range 
●​ all parts (voices) in range 
●​ all parts (voices) in all ranges 

○​ Vectorize music21 
■​ as semitones  (zero indexed) 
■​ as generic diatonic intervals (3, not -3 or +3) 

○​ Algorithms for Similarities and Matches 
■​ System looks for edit distances between similar or exact strings of 

vectors. 
■​ User can set threshold of number of vectors (ex:  “5”) 
■​ Rests serve to ‘break’ the string (1, 2, R, 3, 4, for ex, would simply be 

ignored altogether at a threshold of 5.  But 1 2 R 3 4 5 6 7 would 
return 3 4 5 6 7) 

■​ For similarity ranking: If one item differs in a string, then score of “1”, 
etc.  In short:  “how many changes would be needed to make these 
the same.” Then ranks them.  So this method would allow us to 
capture ‘flexed’ soggetti.   

○​ Next Steps 
■​ Rhythmic information 

●​ Parse data as 1/4 note duration reference (this is the most 
granular, and built in to music21).  This will allow us to run 
similarity string searches exact proportions (or rhythmic 
‘distances’)  Up 50%, down 25%, and so on.  The ‘floating 
number’ approach is most exact 

●​ Then we can generalize the exact durations as relative 
movement, such as Longer, Shorter, Equal. 

●​ Andy’s system used number for a melodic vector and a letter 
for a rhythmic one.  But python lists allow us to use any kind 
of data. 

■​ Data Model in Python? 
●​ Should the results be modelled as a dictionary, object, or data 

class? 
●​ We need for each stream or string 

○​ Title of piece 
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○​ Voice(s) 
○​ XML IDs (in the original MEI) 
○​ Measure Ranges (for the EMA 

Find My Phrase (or Counterpoint) Idea 

●​ Normally in CRIM we have been thinking about ways to discover similar melodies 
automatically.  The guidance we offer includes: 

○​ Choice of corpus or pieces 
○​ Diatonic or Chromatic melodic intervals (generic or semitones) 
○​ Length of the ‘set’ of vectors 
○​ Sampling rate (all notes, or by offset or by beat) 

●​ Could we also consider the problem in reverse?  That is, the user provides a 
particular phrase, and asks “how many phrases are similar to this?”  The machine 
looks for them and provides the answer.  The same thing might even be done for 
ELVIS-style contrapuntal n-grams:  “how many passages are similar to this?” 

○​ The pseudo code might look like this: 
■​ user selects notes in CRIM 
■​ user copies the EMA (along with URL of the piece) 
■​ the full ‘address’ of the passage is passed to OMAS, which returns 

valid MEI consisting of only the selected notes 
■​ The MEI is in turn converted to music21 
■​ the music21 is vectorized or treated to the VIS system 
■​ search for that pattern in the corpus (perhaps it’s been 

pre-processed in some way to speed this up) 
●​ Questions: 

○​ How account for the fact that these examples would be of varying length?  
Would it matter if they were longer than the ‘typical’ vector-similarity 
window?  Or would we check the length of the vector and then search 
within that window? 

○​ What would determine the length of the matches?  Some moving window 
of similarity?   

 

 

Exemplifier:  Output Formats of music21 Results 

○​ Currently the ‘array’ of results is returned in the terminal as various sets of 
related items, each with interval vectors, measure ranges, piece names, 
sets of durations. 

○​ These are, moreover, ranked in terms of degrees of identity and similarity 
(based on how many “steps” would be needed in order to transform the 
given result into an “exact” match. 

○​ Would it be possible to translate these results into a CSV file or similar 
workspace that would contain things like: 
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■​ the melodic Vectors 
■​ the rhythmic durations 
■​ PieceID 
■​ PieceTitle, et 
■​ Measure Ranges 
■​ the EMA 
■​ Some (arbitrary) ‘heading’, of the sort that Andy showed in one of his 

first experiments, in which each group is given a random word as its 
title 

■​ The EMA concatenated with the piece URL and OMAS service, and 
so that it was ready to be ‘sliced’ as valid MEI and then returned via 
Verovio to the user?  This would allow rapid testing of the results.  
Or perhaps the results could be rendered directly in the notebook 
this way. 

○​  
Discrete Fourier Transformation 

●​ See Summary of readings and discussion with Harding and Moss. 

 

Genetics and Bioinformatics 
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