
Migrating Fields out of
DidCommitProvisionalLoad_Params

fergal@ rakina@
2020-09-07

Background
After the browser sends CommitNavigation to the renderer, it waits for the
DidCommitProvisionalLoad_Params IPC before making the speculative render frame host
current. Everything in that IPC is based on information known to the browser at the time it sends
the CommitNavigation.

dcheng@ is working on https://crrev.com/c/1956814 which will ensure that browser commits turn
into renderer commit.

Goal
Since all the information is available to the browser, we can calculate everything we need in the
browser and we would not need to wait for the reply before switching render frame hosts. This
resolves a bunch of potential race conditions related to actions performed on the current host
while the RPC is sent but not yet replied. It also should allow for the removal of a lot of logic
from the renderer (e.g. chunks of DocumentLoader) and maybe simplification of logic in the
browser (e.g. history and NavigationType logic).

The end state should be that DidCommitProvisionalLoad_Params has no fields or has been
removed entirely (if we have eliminated all cases of failure to commit (or turned them into
CHECKs) I'm not sure the IPC serves any purpose anymore, receiving it could be a sanity
check but it's unclear when you could react to it's non-arrival).

How
As always, the danger is the unknowns. We can't really be sure that we've got this all correct by
just reading code and migrating logic. Even with all the tests passing it's very possible for us to
have get things wrong. So, each field in the response we can go through the following stages:

1.​ DCHECK_EQ - the field's value is calculated in the browser and and compared the IPC

https://source.chromium.org/chromium/chromium/src/+/master:content/common/navigation_params.mojom;l=304?q=CommitNavigationParams%20file:mojom$&ss=chromium
https://source.chromium.org/chromium/chromium/src/+/master:content/common/frame_messages.h;drc=e5a66e23e992816ccd5a86e3a49900889255a54d;l=263
https://crrev.com/c/1956814
https://docs.google.com/document/d/1cXCmxZH0OHaStYWQZFDftxMDLYBfYFpHa7SJDw2Y0vA/edit#heading=h.hsm5b8asoz3h
https://source.chromium.org/chromium/chromium/src/+/master:content/common/frame_messages.h;drc=e5a66e23e992816ccd5a86e3a49900889255a54d;l=263

value, all tests pass with this DCHECK_EQ
2.​ DumpWithoutCrashing - behind a flag (1 flag per parameter), mismatches cause

DumpWithoutCrashing in released binaries. We enable these in the usual way for a flag
(canary, dev, …) and confirm that we do not see dumps. Debugging the dumps may be
difficult since the stack will not really reveal much about what led us to that point but we
can attach CrashKeys.

3.​ Delete from renderer - When we are confident that the browser version is correct, start
passing the computed value in the CommitPending IPC so that the renderer can use this
instead of calculating it itself. This enables deletion of code and removal from
DidCommitProvisionalLoad_Params

We have a sheet which lists the fields in the RPC params with some notes on what is needed to
calculate them on the browser side.

Possible blockers

Error page handling
Removing error page commits within the renderer

Document.open
As pointed out in a comment from dcheng@, document.open is specced to cancel ongoing
navigations

●​ https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document-open-
steps

●​ https://github.com/whatwg/html/issues/3447

Also some bugs that might depend on this

●​ https://bugs.chromium.org/p/chromium/issues/detail?id=763106#c53
●​ https://bugs.chromium.org/p/chromium/issues/detail?id=1099193

Currently this is done via blink::FrameLoader::StopAllLoaders. StopAllLoaders stops loading in
all subframes too (this agrees with the spec, I think) and resets the NavigationClients.
What happens if a renderer-initiated navigation has already committed on the browser side at
this point?

There are 2 distinct cases to consider:

●​ racy: the navigation is triggered in 1 task and then document.open is called in another.
This is racy, the navigation could reach the commit stage before the cancellation makes
it to the browser. By just accepting the commit if it comes, even after the document.open,

https://docs.google.com/spreadsheets/d/1FcwAeGEXiVJDwsP4nbHvDIgvOm_byj1GnsfTRqIawds/edit#gid=0
https://docs.google.com/document/d/1hf7b7OWlJMCpfFBk3xgxzHnskyNx3X8qjNWg6M1hr_0/edit#
https://docs.google.com/document/d/1oUKSDYIaz1-XMJw2f3KRTvq7yNR5O5IK8Iwgmk8laiw/edit?disco=AAAAG6wosUM
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document-open-steps
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document-open-steps
https://github.com/whatwg/html/issues/3447
https://bugs.chromium.org/p/chromium/issues/detail?id=1099193
https://source.chromium.org/search?q=blink::FrameLoader::StopAllLoaders&ss=chromium

we just widen the window for races slightly
●​ non-racy: this seems solvable but the cost might not be acceptable

○​ We could delay outgoing navigation requests until the end of the task, clearing
them if document.open is called. This would slightly delay the start of renderer
initiated navigations.

○​ we could avoid this in most cases with extra complication of sending the
navigation requests to the browser immediately but requiring a second "go
ahead, document.open wasn't called" signal before they can be committed. It
seems like this signal would arrive at the browser long before it was ready to
commit, only when the JS task is long (10s or 100s of ms) would the commit
actually be blocked waiting for it.

We also need to consider subframes (including remote ones). These could also have commits
arriving after document.open but that's OK since the document.open is going to result in the
destruction of these frames.

	Migrating Fields out of DidCommitProvisionalLoad_Params
	Background
	Goal
	How
	Possible blockers
	Error page handling
	Document.open

