AB Calculus Practice 5.1

Finite limits

1. If a limit as x approa	aches a finite number yie	elds an un-workable result (like $\frac{0}{0}$), t	here's a good chance
you need to	the top and botton	m and cancel something out.	
2. For $f(x)$ to be contin	uous at the point at whic	ch x = a, which of the following does	not necessarily need
to be true?			
a. $\lim_{x \to a^{+}} f(x)$ m	ust exist		
b. $\lim_{x \to a^{-}} f(x)$ m	ust exist		
c. $\lim_{x \to a} f(x)$ mu	ıst exist		
$\dim_{x \to a^{+}} f(x) \bmod a$	ust be equal to $\lim_{x \to a^{-}} f(x)$		
e. $\lim_{x \to a^+} f'(x)$ n	nust be equal to $\lim_{x \to a^{-}} f'(x)$	<i>x</i>)	
f. $\lim_{x \to a} f(x)$ mu	st be equal to $f(a)$		
3. Any <i>x</i> -value which	causes you to divide	will result in a _	
4. A of fraction cancels out.	liscontinuity, also called	a "hole," occurs when a factor on to	p and bottom of a
5. For $f(x)$ to be different	entiable at the point at wh	hich $x = a$, the left- and right-hand	must
match and the left- and	l right-hand	must also match.	
		by taking the	of the top
and bottom of a fraction	on.		
7. L'Hôspital's Rule or	nly applies when evaluat	ing a limit that gives you or	∴

bold numbers - calculator permitted

8.
$$\lim_{x \to -3} \frac{x^2 + 6x + 8}{x^2 - x - 6}$$
 is

9.
$$\lim_{x \to 5} \frac{x^2 - 2x - 15}{x^2 - 25}$$
 is

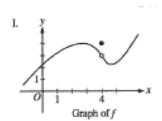
10.
$$\lim_{x \to 3^{-}} \frac{|x-4|}{|x-4|}$$
 is

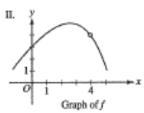
11. If

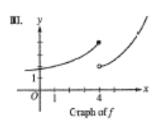
$$f(x) = \ln x \qquad \text{for} \qquad 0 < x \le 3$$

$$f(x) = x \ln x$$
 for $3 < x \le 5$

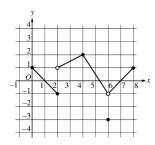
then $\lim_{x \to 3} f(x)$ is







12. Of the graphs shown, for which does $\lim_{x \to 4} f(x)$ not exist?



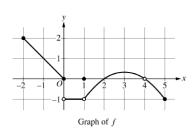
13. The figure above shows the graph of the function *f*. Which of the following statements are false? *Circle all that apply*

I.
$$\lim_{x \to 2^{-}} f(x) = f(2)$$

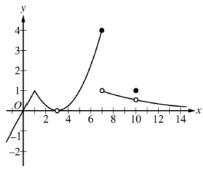
II.
$$\lim_{x \to 2^{+}} f(x) = f(2)$$

III.
$$\lim_{x \to 6^{-}} f(x) = \lim_{x \to 6^{+}} f(x)$$

IV.
$$\lim_{x \to 6} f(x) = f(6)$$

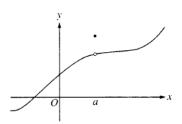


14. The graph of the function f is shown above. For what values of a does $\lim_{x \to a} f(x) = -1$?



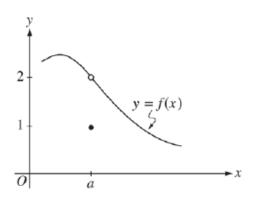
Graph of f

15. The graph of the function f is shown above. At what value(s) of x does f have a removable discontinuity?



16. The graph of a function f is shown above. Which of the following statements about f is true?

- (A) $\lim_{x \to a} f(x)$ is equal to f(a)
- (B) f is continuous at x = a
- (C) $\lim_{x \to a} f(x) = 0$
- (D) $\lim_{x \to a^{+}} f(x)$ is equal to $\lim_{x \to a^{-}} f(x)$.
- (E) $\lim_{x \to a} f(x)$ does not exist



17. The graph of a function f is shown in the figure above. Which of the following statements is false?

- (A) x = a is in the domain of f.
- (B) f is continuous at x = a
- (C) $\lim_{x \to a} f(x) = 2$
- (D) f(a) = 1
- (E) $\lim_{x \to a^{+}} f(x)$ is equal to $\lim_{x \to a^{-}} f(x)$.

18. Let f be the function given by $f(x) = \frac{(x-3)^2(x+2)}{(x-3)(x+4)}$. For which value(s) of x is f not continuous?

$$f(x) = \begin{cases} x^2 - 3x + 9 & \text{for } x \le 2\\ kx + 1 & \text{for } x > 2 \end{cases}$$

19. The function f is defined above. For what value of k, if any, is f continuous at x = 2?

$$f(x) = \begin{cases} x^2 \sin(\pi x) & \text{for } x < 2\\ x^2 + cx - 18 & \text{for } x \ge 2 \end{cases}$$

20. Let f be the function defined above, where c is a constant. For what value of c, if any, is f continuous at x = 2?

$$f(x) = \begin{cases} 6 + cx & \text{for } x < 1\\ 9 + 2\ln x & \text{for } x \ge 1 \end{cases}$$

21. Let f be the function defined above, where c is a constant. If f is continuous at x = 1, what is the value of c?

$$f(x) = \begin{cases} \frac{x^2 - 7x + 10}{b(x - 2)} & \text{for } x \neq 2\\ b & \text{for } x = 2 \end{cases}$$

22. Let f be the function defined above. For what value of b, if any, is f continuous at x = 2?

x	0	1	2
f(x)	1	\boldsymbol{k}	2

23. The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. The equation $f(x) = \frac{5}{2}$ must have at least two solutions in the interval [0, 2] if $k = \frac{5}{2}$

(A) 0 (B)
$$\frac{1}{2}$$
 (C) 1 (D) 2 (E) 3

х	0	4	6	8	13
f(x)	3	4.5	3	2.5	4.4

24. The table above shows selected values of a continuous function f. For $0 \le x \le 13$, what is the fewest possible number of times f(x) = 3.5?

$$f(x) = \begin{cases} 3x + 5 & \text{when } x < -1 \\ -x^2 + 3 & \text{when } x \ge -1 \end{cases}$$

25. If f is the function defined above, then f'(-1) is

26. If
$$a \neq 0$$
, then $\lim_{x \to a} \frac{x^3 - a^3}{x^4 - a^4}$ is

27.
$$\lim_{x \to -4} \frac{\tan(x+4)}{4e^{x+4} + x}$$
 is

х	f(x)	f'(x)	f''(x)	f'''(x)
2	0	0	5	7

28. The third derivative of the function f is continuous on the interval (0, 4). Values for f and its first three derivatives at x = 2 are given in the table above. What is $\lim_{x \to 2} \frac{(x-2)^2}{f(x)}$?