
Upgrading For Loops: A Tutorial in Clang Tooling 
 
This document is intended to show how to build a useful source-to-source translation tool based 
on Clang’s LibTooling. It is explicitly aimed at people who are new to Clang, so all you should 
need is a working knowledge of C++ and the command line. 
 
Ready? 

Step 0: Obtaining Clang 
As Clang is part of the LLVM project, you’ll need to download LLVM’s source code first. Both 
Clang and LLVM are maintained as Subversion repositories, but we’ll be accessing them 
through the git mirror. 
 
First, choose a place for LLVM to live. I created mine in ~/clang-llvm. 
$ mkdir ~/clang-llvm && cd ~/clang-llvm​
$ git clone http://llvm.org/git/llvm​
$ cd llvm/tools​
$ git clone http://llvm.org/git/clang.git clang 

 

All done? Great! Next you need to obtain the CMake build system and Ninja build tool. You may 
already have CMake installed, but current binary versions of CMake aren't built with Ninja 
support. 
 
$ mkdir ~/cmake && cd ~/cmake 

$ git clone https://github.com/martine/ninja.git​
$ cd ninja 

$ git checkout release​
$ ./bootstrap.py​
$ sudo cp ninja /usr/bin/ 

$ git clone git://cmake.org/stage/cmake.git​
$ cd cmake​
$ git checkout next​
$ ./bootstrap​
$ make​
$ sudo make install​
 

Okay. Now we’ll build Clang! 
$ cd ~/clang-llvm 

$ mkdir llvm_build​
$ cd llvm_build​
$ cmake -G Ninja ../ -DLLVM_BUILD_TESTS=ON  # Enable tests; default is off.​



$ ninja​
$ ninja check       # Test LLVM only.​
$ ninja clang-test  # Test Clang only. 

$ ninja install 

 

And we’re live.​
 
All of the tests should pass, though there is a (very) small chance that you can catch LLVM and 
Clang out of sync. Running git svn rebase in both the llvm and clang directories should fix 
any problems. 
 
Finally, we want to set Clang as its own compiler. The second command will bring up a GUI for 
configuring Clang; you need to set the entry for CMAKE_CXX_COMPILER. 
$ cd ~/clang-llvm/llvm/llvm_build 

$ ccmake ../ 

​ Scroll down to CMAKE_BUILD_TYPE, and set it to Debug. 
​ Press ‘t’ to turn on advanced mode. 
​ Scroll down to CMAKE_CXX_COMPILER, and set it to /usr/bin/clang++, or wherever 
you installed it. 
​ Press ‘c’ to configure, then ‘g’ to generate CMake’s files. 
 
Finally, run ninja one last time, and you’re done. 

Intermezzo: About Clang’s Abstract Syntax Tree (AST) 
In order to work on the compiler, you need some basic knowledge of the abstract syntax tree. 
There is some documentation available on Clang's website, but I will mention some of the 
relevant parts here as well. 
 
In C++, code is comprised of statements and declarations . Clang uses a systematic hierarchy 1

of classes to represent all the components of the AST, which is extensively documented on the 
Clang doxygen. It’s worth some time to explore the basic kinds of statement and expression, 
since you will need to deal with them directly. 
 
Just looking at the Stmt documentation, you will immediately notice some familiar C++ 
constructs. For example, it doesn’t require much effort to understand the roles of ForStmt, 
WhileStmt, ReturnStmt, and CompoundStmt, while others such as MSDependentExistsStmt and 
ObjCForCollectionStmt will probably not turn up in this exercise. Because Clang considers 
expressions - pieces of code which evaluate to values - to be statements, the Expr class is a 
subclass of Stmt. You can also see some of the types of expression, such as BinaryOperator, 

1 Actually, there are others, such as preprocessor directives, but we’re not concerned with them right now. 
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CallExpr, and ArraySubscriptExpr from the Stmt documentation, but the Expr class has too 
many subclasses for the Expr documentation to display a pretty inheritance graph. 
 
Here, it’s important to note that Clang’s AST contains a surprising amount of information not 
directly specified by the programmer, such as implicit casts and dealings with temporary 
expressions. To see what I mean, try asking Clang to show you the AST for this simple program. 
 
$ mkdir ~/test-files/ 

$ gvim ~/test-files/simple.cc 

struct T { int x; };​
void f() {​
  T t1  = {0};​
  int i = t1.x + 2;​
} 

This command instructs Clang to dump a text-friendly version of the AST: 
$ clang -cc1 -ast-dump ~/test-files/simple.cc  2

Which outputs a bunch of text, ending with 
​
(CompoundStmt 0x3697f98​
  (DeclStmt 0x3697e48​
    0x3697d40 "T t1 =​
      (InitListExpr 0x3697e00 'struct T'​
        (IntegerLiteral 0x3697d98 'int' 0))")​
  (DeclStmt 0x3697f80​
    0x3697e70 "int i =​
      (BinaryOperator 0x3697f58 'int' '+'​
        (ImplicitCastExpr 0x3697f40 'int' <LValueToRValue>​
          (MemberExpr 0x3697ef0 'int' lvalue .x 0x3664a80​
            (DeclRefExpr 0x3697ec8 'struct T' lvalue Var 0x3697d40 't1' 

'struct T')))​
        (IntegerLiteral 0x3697f20 'int' 2))")) 

 
As you can see, the function we defined has a body which consists of a compound statement. 
This compound statement contains two declarations - one of which has an LValue-to-RValue 
implicit conversion listed. 
 
To really get the feel of the AST, it’s a good idea to try compiling a few simple programs with the 
-cc1 -ast-dump arguments, though you won’t be able to include any standard headers . I 3

3 This is because the well-hidden -cc1 option tells Clang to talk directly to the compiler, rather than 
automatically including system header files. Even clang -help doesn’t mention it! 

2 A similar -ast-dump-xml option is available too, though it will occasionally drop back to Lisp-style 
output. 

http://clang.llvm.org/doxygen/classclang_1_1Expr.html


happen to be a fan of the syntax highlighting offered by Vim’s Lisp mode, which is easily 
accessed by piping the output of the AST dump into my text editor, then setting the filetype to 
Lisp: 
$ clang -cc1 -ast-dump ~/test-files/simple.cc | gvim - 

The output is even prettier when all of the extraneous quotes are deleted. 
 
Finally, Clang's system for handling types is split between two places: QualType and Type. We 
will usually work with the former, though the latter expresses Clang’s type hierarchy, which will 
come into play later. Just remember that you might need to check both classes for a given 
method. 
 
And that’s enough about the AST for now. 

Step 1: Creating a ClangTool 
Now that we have enough background knowledge, it’s time to create the simplest productive 
ClangTool in existence: a syntax checker. While this already exists as clang-check, it’s important 
to understand what’s going on. 
 
First, we’ll need to create a new directory for our tool and tell CMake that it exists. 
$ cd ~/clang-llvm/llvm/tools/clang 

$ mkdir tools/loop-convert 

$ echo 'add_subdirectory(loop-convert)' >> tools/CMakeLists.txt 

$ vim tools/loop-convert/CMakeLists.txt 

 

CMakeLists.txt should have the following contents: 
set(LLVM_LINK_COMPONENTS support) 

set(LLVM_USED_LIBS clangTooling clangBasic clangAST) 

 

add_clang_executable(loop-convert 

 loop-convert.cpp 

 ) 

target_link_libraries(loop-convert 

 clangTooling 

 clangBasic 

 clangASTMatchers 

 ) 

 

With that done, Ninja will be able to compile our tool. Let’s give it something to compile! 
$ vim tools/loop-convert/loop-convert.cpp 

 

Even though this is a short code segment, quite a bit is going on. Here’s a breakdown: 

http://clang.llvm.org/doxygen/classclang_1_1QualType.html
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First, the includes needed to get a ClangTool up and running:​
#include "clang/Basic/FileManager.h" 

#include "clang/Frontend/CompilerInstance.h" 

#include "clang/Frontend/FrontendActions.h" 

#include "clang/Tooling/Tooling.h" 

#include "clang/Tooling/Refactoring.h" 

 

Next: shortcuts for qualified names 
using std::vector; 

using std::string; 

namespace cl = llvm::cl; 

using namespace clang::tooling; 

 

Here, we create two command-line arguments: the build path, and a list of source files to hand 
to the tool. There aren’t many surprises as to what they specify: BuildPath is an optional string 
parameter, and SourcePaths is a (potentially empty) vector<string>. This relies on the LLVM 
CommandLine library. 
static cl::opt<string> BuildPath( 

   cl::Positional, 

   cl::desc("<build-path>")); 

 

static cl::list<string> SourcePaths( 

   cl::Positional, 

   cl::desc("<source0> [... <sourceN>]"), 

   cl::OneOrMore); 

 

Now we get to the main function. We first need to tell Clang how it should treat the source files 
we wish to examine, which can either be accomplished by referencing a compilation database 
or by specifying the compilation arguments on the command line. 
Note that we first try to decide the compiler options from the command line before falling back 
on the compilation database. 
int main(int argc, const char **argv) { 

 // OwningPtr is one of LLVM’s RAII smart pointers. 

 llvm::OwningPtr<CompilationDatabase> Compilations( 

   FixedCompilationDatabase::loadFromCommandLine(argc, argv)); 

 cl::ParseCommandLineOptions(argc, argv); 

 if (!Compilations) { 

   string ErrorMessage; 

   Compilations.reset(CompilationDatabase::loadFromDirectory(BuildPath, 

                                                             ErrorMessage)); 

   if (!Compilations) 

     llvm::report_fatal_error(ErrorMessage); 

http://llvm.org/docs/CommandLine.html#quickstart
http://llvm.org/docs/CommandLine.html#quickstart


 } 

Clang uses a compilation database to store all the commands issued to the compiler specifically 
so that tools don’t have to repeat the build system’s work. 
 
Now, we create the tool and run it over some source code. 
 ClangTool SyntaxTool(*Compilations, SourcePaths); 

 // First, let's check to make sure there were no errors. 

 if (int result = SyntaxTool.run( 

     newFrontendActionFactory<clang::SyntaxOnlyAction>())) { 

   llvm::errs() << "Error compiling files.\n"; 

   return result; 

 } 

 return 0; 

} 

 

And that’s it! You can compile our new tool by running ninja from the llvm_build directory. 
$ cd ~/clang-llvm/llvm/llvm_build 

$ ninja 

 

You should now be able to run the syntax checker, which is located in llvm_build/bin, on any 
source file. Try it! 
$ bin/loop-convert . \ 

  ../tools/clang/tools/loop-convert/test-files/simple.cpp -- 

Note the two dashes after we specify the source file. The additional options for the compiler are 
passed after the dashes rather than loading them from a compilation database - there just aren't 
any options needed right now. 
 

The full source is available at array-step-1. 

Intermezzo: Learning ASTMatchers 
Clang recently introduced the ASTMatcher library to provide a simple, powerful, and concise 
way to specify the shape of an AST. Implemented as a DSL powered by macros and templates 
(see include/clang/ASTMatchers/ASTMatchers.h if you’re curious), matchers offer the feel of 
algebraic data types common to functional programming languages. 
 
For example, suppose you wanted to examine only binary operators. There is a matcher to do 
exactly that, conveniently named binaryOperator. I’ll give you one guess what this matcher 
does: 
binaryOperator(hasOperatorName("+"), hasLHS(integerLiteral(equals(0)))) 

Shockingly, it will match against addition expressions whose left hand side is exactly the literal 
0. It will not match against other forms of 0, such as '\0' or NULL, but it will match against 



macros that expand to 0. The matcher will also not match against calls to the overloaded 
operator '+', as there is a separate operatorCallExpr matcher to handle overloaded operators. 
 
The AST matchers are divided into three types: StatementMatchers, DeclarationMatchers, 
and TypeMatchers, which respectively match against statements, declarations, and types. In 
addition, I mentally divide machers into a different set of four categories, based on the roles they 
play. 
 
The first category represents a particular object in the AST. In particular, each kind of node in 
the AST has a similarly-named matcher - BinaryOperator expressions are matched by the 
binaryOperator matcher, ForStmt statements are matched by the forStmt matcher, and so 
on. 
 
There are also a good number of “qualifier” matchers which let you deconstruct parts of a 
particular AST node, such as hasLHS for binary operators, hasLoopInit for for statements, and 
argumentCountIs for function calls. Clang’s developers have tried to name each of these 
“qualifier” matchers consistently - they usually begin with a prefix or suffix of “has” or “is” . 4

 
“Connective” matchers, which combine other matchers, form the third kind. The well-named 
anyOf, allOf, unless, and anything matchers from this category. I find that I rarely use the 
allOf matcher directly, as it is integrated into many of the AST node matchers . One important 5

note for debugging matchers is that C++’s type deduction is unfortunately not as awesome as 
certain other languages’. Some matchers, and the “connective” matchers in particular, will 
occasionally need to be wrapped in the expression or statement matchers in order to avoid 
ambiguous template deduction errors. 
 
Finally, we arrive at a special matcher and member function, id and bind, which bind a 
matched AST node to a string identifier. We need some way to refer to matched nodes in order 
to do anything interesting with them, after all! id and bind behave identically , with the 6

distinction that id’s string identifier is passed before the matcher it identifies while bind’s 
identifier is specified after its respective matcher. For example, these two matchers are 
functionally equivalent: 
variable(hasType(isInteger())).bind("intvar") 

id("intvar", variable(hasType(isInteger()))) 

They both define DeclarationMatchers which match variable declarations of integer type, 
identified by the string "intvar". I tend to prefer using bind for short matchers and id for long 
ones. 
 

6 Technically, bind is a method implemented by bindable matchers, but it serves the same role as id. 

5 If you look at include/ASTMatchers/ASTMatchers.h, you will notice that most of the AST node matchers 
are defined as VariadicDynCastAllOfMatchers, which contain an implicit allOf. 

4 There are some exceptions, such as the callee matcher, which I would have named hasCallee. 



One last note about the matcher library before we move on to our first real example: Some 
matchers are only permitted within the contexts of other matchers, such as hasArgument, which 
will cause a compilation error if it’s not used within the context of a function or constructor call. 
The compiler will give you a somewhat helpful error message in case something is incorrect, 
usually of the form:  
../tools/clang/include/clang/ASTMatchers/ASTMatchers.h:1244:3: error: 

'instantiated_with_wrong_types' declared as an array with a negative size​
  TOOLING_COMPILE_ASSERT((llvm::is_base_of::value ||​
  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~​
../tools/clang/include/clang/ASTMatchers/ASTMatchersInternal.h:53:43: note: 

expanded from macro 'TOOLING_COMPILE_ASSERT'​
  typedef CompileAssert<(bool(Expr))> Msg[bool(Expr) ? 1 : -1]​
                                          ^~~~~~~~~~~~~~~~~~~​
../tools/clang/include/clang/ASTMatchers/ASTMatchersInternal.h:518:27: note: 

in instantiation of member function 

'clang::ast_matchers::internal::matcher_hasArgumentMatcher >::matches' 

requested here​
    return Matcher(new MatcherT(Param1, Param2));​
                          ^​
../tools/clang/tools/loop-convert/LoopActions.cpp:15:14: note: in 

instantiation of function template specialization 

'clang::ast_matchers::internal::PolymorphicMatcherWithParam2 >::operator 

Matcher' requested here​
     forStmt(hasArgument(0, expression()) 

 
This is a pre-C++11 compile-time assertion failure of llvm's inheritance check. What deserves 
your attention is the name of the array declared with a negative size, 
"instantiated_with_wrong_types" in this case. See the LLVM programmer's manual for an 
explanation of LLVM's type system. 

Step 2: Using AST Matchers 
Okay, on to using matchers for real. Let’s start by defining a matcher which will capture all for 
statements that begin by defining a new variable initialized to zero. The loop shell will need to 
attach an identifier, so a good beginning is 
id("forLoop", forStmt()) 

Next, we want to specify that a single variable is declared in the first portion of the loop, so we 
can extend the matcher to 
id("forLoop", 

  forStmt(hasLoopInit(declarationStatement(hasSingleDecl(variable()))))) 

Finally, we can add the condition that the variable is initialized to zero. 
id("forLoop", forStmt(hasLoopInit(declarationStatemnt(hasSingleDecl(variable( 

http://llvm.org/docs/ProgrammersManual.html#isa


   hasInitializer(integerLiteral(equals(0))))))))) 

 

It is fairly easy to read and understand the matcher definition (“match loops whose init portion 
declares a single variable which is initialized to the integer literal 0”), but deciding that every 
piece is necessary is more difficult. Note that this matcher will not match loops whose variables 
are initialized to ‘\0’, 0.0, NULL, or any form of zero besides the integer 0. 
The last step is giving the matcher a name: 
StatementMatcher LoopMatcher = 

  id("forLoop", 

     forStmt(hasLoopInit(declarationStatement(hasSingleDecl(variable( 

         hasInitializer(integerLiteral(equals(0))))))))); 

 

Once you have defined your matchers, you will need to add a little more scaffolding in order to 
run them. Matchers are paired with a MatchCallback and registered with a MatchFinder object, 
then run from a ClangTool. More code! 
 
In ForActions.h: 

StatementMatcher LoopMatcher = forStmt().bind("forLoop"); 

 

class LoopPrinter : public MatchFinder::MatchCallback { 

public : 

 virtual void run (const MatchFinder::MatchResult &Result) { 

   if (const ForStmt *FS = Result.nodes.getStmtAs<ForStmt>("forLoop")) 

     FS->dump(); 

} 

 
In loop-convert.cpp 

// Starting from the definition of SyntaxTool in main() 

ClangTool SyntaxTool(*Compilations, SourcePaths); 

if (int status = Tool.run(newFrontendActionFactory(&Finder))) { 

 llvm::errs() << "Error compiling files."; 

 return status; 

} 

ClangTool LoopTool(*Compilations, SourcePaths); 

MatchFinder Finder; 

LoopPrinter Printer; 

Finder.addMatcher(LoopMatcher, &Printer); 

if (int status = Tool.run(newFrontendActionFactory(&Finder)) { 

 llvm::errs() << "Error encountered during translation.\n"; 

 return status; 

} 

 
Now, you should be able to recompile and run the code to discover for loops. Create a new file 



with a few examples, and test out our new handiwork: 
 
$ cd ~/clang-llvm/llvm/llvm_build/ 

$ ninja loop-convert 

$ vim ~/test-files/simple-loops.cc 

$ bin/loop-convert ~/test-files/simple-loops.cc 

The complete source code with examples is available at array-step-2a 

Step 2.5: More Complicated Matchers 
Our simple matcher is capable of discovering for loops, but we would still need to filter out many 
more ourselves. We can do a good portion of the remaining work with some cleverly chosen 
matchers, but first we need to decide exactly which properties we want to allow. 
 
How can we characterize for loops over arrays which would be eligible for translation to 
range-based syntax? Range based loops over arrays of size N 

1.​ Start at index 0 
2.​ Iterate consecutively 
3.​ end at index N - 1 

We already check for (1), so all we need to add is a check to the loop’s condition to ensure that 
the loop’s index variable is compared against N and another check to ensure that the increment 
step just increments this same variable. The matcher for (2) is straightforward: require a pre- or 
post-increment of the same variable declared in the init portion. 
 
Unfortunately, such a matcher is impossible to write. Matchers contain no logic for comparing 
two arbitrary AST nodes and determining whether or not they are equal , so the best we can do 7

is matching more than we would like to allow, and punting extra comparisons to the callback. 
 
In any case, we can start building this sub-matcher. We can require that the increment step be a 
unary increment like this: 
hasIncrement(unaryOperator(hasOperatorName("++"))) 

 

Specifying what is incremented introduces another quirk of Clang’s AST: usages of variables are 
represented as DeclRefExpr’s, or declaration reference expressions, because they are 
expressions which refer to variable declarations. 
hasIncrement(unaryOperator( 

 hasOperatorName(“++”), 

 hasUnaryOperand(declarationReference()))) 

 

Further requiring the incremented variable to be an integer type changes our matcher again 

7 There are several possible notions of "equal" here. And backreferences, which would be necessary to 
do this in a matcher, make regular expression engines significantly more complicated. 



hasIncrement(unaryOperator( 

 hasOperatorName(“++”), 

 hasUnaryOperand(declarationReference(to(variable(hasType(isInteger()))))))) 

 

And the last step will be to attach an identifier to this variable, so that we can retrieve it in the 
callback: 
hasIncrement(unaryOperator( 

 hasOperatorName(“++”), 

 hasUnaryOperand(declarationReference(to( 

   variable(hasType(isInteger())).bind(“incrementVariable”)))))) 

 

We can add this code to the definition of LoopMatcher and make sure that our program, outfitted 
with the new matcher, only prints out only loops that declare a single variable initialized to zero 
and have an increment step consisting of a unary increment of some variable. 
 
The adjusted code is available at array-step-2b. Compile and run with the new matchers - does 
loop-convert behave as you would expect? 
 
Now, we just need to add a matcher to check if the condition part of the for loop compares a 
variable against the size of the array. There is only one problem - we don’t know which array 
we’re iterating over without looking at the body of the loop! We are again restricted to 
approximating the result we want with matchers, filling in the details in the callback. 
hasCondition(binaryOperator(hasOperatorName(“<”)) 

 

It makes sense to ensure that the left-hand side is a reference to a variable, and that the 
right-hand side has integer type. 
hasCondition(binaryOperator( 

 hasOperatorName(“<”), 

 hasLHS(expression(hasType(isInteger()))), 

 hasRHS(declarationReference(to(variable(hasType(isInteger()))))))) 

 

This code, with a bind added to both the LHS and RHS of the less-than operator, is available at 
array-step-2c. It is especially important to build and test this version on a standard for loop. 
 
Why? Because it doesn’t work. Of the three loops provided in test-files/simple.cpp, zero of them 
have a matching condition. A quick look at the AST dump of the first for loop, produced by the 
previous iteration of loop-convert, shows us the answer: 
 
(ForStmt 0x173b240​
  (DeclStmt 0x173afc8​
    0x173af50 "int i =​
      (IntegerLiteral 0x173afa8 'int' 0)")​
  <<<NULL>>>​



  (BinaryOperator 0x173b060 '_Bool' '<'​
    (ImplicitCastExpr 0x173b030 'int' <LValueToRValue>​
      (DeclRefExpr 0x173afe0 'int' lvalue Var 0x173af50 'i' 'int'))​
    (ImplicitCastExpr 0x173b048 'int' <LValueToRValue>​
      (DeclRefExpr 0x173b008 'const int' lvalue Var 0x170fa80 'N' 'const 

int')))​
  (UnaryOperator 0x173b0b0 'int' lvalue prefix '++'​
    (DeclRefExpr 0x173b088 'int' lvalue Var 0x173af50 'i' 'int')) 

 (CompoundStatement … 
 
We already know that the declaration and increments both match, or this loop wouldn't have 
been dumped. The culprit lies in the implicit cast applied to the first operand (i.e. the LHS) of the 
less-than operator, an L-value to R-value conversion applied to the expression referencing i. 
Thankfully, the matcher library offers a solution to this problem in the form of 
ignoringParenImpCasts, which instructs the matcher to ignore implicit casts and parentheses 
before continuing to match. Adjusting the condition operator will restore the desired match. 
 
hasCondition(binaryOperator( 

 hasOperatorName(“<”), 

 hasLHS(expression(hasType(isInteger()))), 

 hasRHS(ignoringImpCasts(declarationReference( 

   to(variable(hasType(isInteger())))))))) 

 
After adding binds to the expressions we wished to capture and extracting the identifier strings 
into variables, we have array-step-2 completed. 

Step 3: Retrieving Matched Nodes 
So far, the matcher callback isn't very interesting: it just dumps the loop's AST. At some point, 
we will need to make changes to the input source code. Next, we'll work on using the nodes we 
bound in the previous step. 
 
The MatchFinder::run() callback takes a MatchFinder::MatchResult& as its parameter. 
We're most interested in its Context and Nodes members. Clang uses the ASTContext class to 
represent contextual information about the AST, as the name implies, though the most 
functionally important detail is that several operations require an ASTContext* parameter. More 
immediately useful is the set of matched nodes, and how we retrieve them. 
 
Since we bound three variables (identified by ConditionVarName, InitVarName, and 
IncrementVarName), we can obtain the matched nodes by using the getDeclAs() member 
function. 
 



In LoopActions.cpp 
#include "clang/AST/ASTContext/h" 

 

void LoopPrinter::run(const MatchFinder::MatchResult &Result) { 

  ASTContext *Context = Result.Context; 

  const ForStmt *FS = Result.Nodes.getStmtAs<ForStmt>(LoopName); 

  // We do not want to convert header files! 

  if (!FS || !Context->getSourceManager().isFromMainFile(FS->getForLoc())) 

    return; 

  const VarDecl *IncVar = Result.Nodes.getDeclAs<VarDecl>(IncrementVarName); 

  const VarDecl *CondVar = Result.Nodes.getDeclAs<VarDecl>(ConditionVarName); 

  const VarDecl *InitVar = Result.Nodes.getDeclAs<VarDecl>(InitVarName); 

 
Now that we have the three variables, represented by their respective declarations, let's make 
sure that they're all the same, using a helper function I call areSameVariable(). 
  if (!areSameVariable(IncVar, CondVar) || !areSameVariable(IncVar, InitVar)) 

    return; 

  llvm::outs() << "Potential array-based loop discovered.\n"; 

} 

If execution reaches the end of LoopPrinter::run(), we know that the loop shell that looks 
like 
for (int i= 0; i < expr(); ++i) { … } 

For now, we will just print a message explaining that we found a loop. The next section will deal 
with recursively traversing the AST to discover all changes needed. 
 
As a side note, here is the implementation of areSameVariable. Clang associates a VarDecl  8

with each variable to represent the variable's declaration. Since the "canonical" form of each 
declaration is unique by address, all we need to do is make sure neither ValueDecl is NULL and 
compare the canonical Decls. 
static bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) 

{ 

  return First && Second && 

         First->getCanonicalDecl() == Second->getCanonicalDecl(); 

} 

 
It's not as trivial to test if two expressions are the same, though Clang has already done the 
hard work for us by providing a way to canonicalize expressions: 
static bool areSameExpr(ASTContext* Context, const Expr *First, 

                        const Expr *Second) { 

  if (!First || !Second) 

8 VarDecl is a subclass of ValueDecl, which is itself a subclass of Decl. See the VarDecl documentation 
for details. 

http://clang.llvm.org/doxygen/classclang_1_1VarDecl.html


    return false; 

  llvm::FoldingSetNodeID FirstID, SecondID; 

  First->Profile(FirstID, *Context, true); 

  Second->Profile(SecondID, *Context, true); 

  return FirstID == SecondID; 

} 

This code relies on the comparison between two llvm::FoldingSetNodeIDs. As the 
documentation for Stmt::Profile() indicates, the Profile() member function builds a description 
of a node in the AST, based on its properties, along with those of its children. FoldingSetNodeID 
then serves as a hash we can use to compare expressions. 
 
We will need areSameExpr later. For now, the next checkpoint is aray-step-3. Before you run the 
new code on the additional loops added to test-files/simple.cpp, try to figure out which 
ones will be considered potentially convertible. 

Step 4: Finding Usages 
We now arrive at the most complicated part of the journey: checking the body of the for loop to 
discover all usages of the loop variable we identified in the previous step. My first instinct would 
be to write a matcher that checks for ArrayIndexExprs to find permitted usages, and a matcher 
that checks for other references to the loop variable. 
 
StatementMatcher IndexUsageMatcher = 

  declarationReference(to(variable(fromAST(Var)).bind(IndexName))); 

StatementMatcher ArrayUsageMatcher = 

  ArrayIndexExpression(hasBase(expression().bind(ArrayName)), 

                       hasIndex(ignoringImplicitCasts(IndexUsageMatcher))); 

 
Unfortunately, the ASTMatchers library doesn't support running a MatchFinder over an arbitrary 
Stmt, nor does it permit us to create matchers that compare themselves to AST nodes. For now, 
we will fall back upon the previously available tool for exploring the AST: the 
RecursiveASTVisitor , which implements a flexible and powerful way to crawl an AST. Don't 9

worry, as this use case doesn't rely on the class's more complicated aspects. 
 
First, we need to subclass RecursiveASTVisitor. 
In LoopActions.h, 
#include "clang/AST/RecursiveASTVisitor.h" 

class ForLoopASTVisitor : public RecursiveASTVisitor<ForLoopASTVisitor> { 

 public : 

First, some type aliases. We'll need some way to return a collection of permitted expressions 

9 If you have never seen the curiously recurring template pattern, this would be a good time to learn. 

http://llvm.org/docs/doxygen/html/classllvm_1_1FoldingSetNodeID.html
http://clang.llvm.org/doxygen/classclang_1_1Stmt.html#a94f8142ca0a6e44fe4eb2e993f032944
http://clang.llvm.org/doxygen/classclang_1_1RecursiveASTVisitor.html
http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern


that we intend to change, along with a collection of the arrays that were indexed. 
  typedef const Expr* Usage; 

  typedef llvm::SmallVector<Usage, 8> UsageResult; 

  typedef llvm::SmallPtrSet<const Expr *, 1> ContainerResult; 

 
Next, this class will need to remember the variable we are checking, along with the expressions 
that need converting. 
 private: 

  bool OnlyUsedAsIndex; 

  ASTContext *Context; 

  UsageResult Usages; 

  ContainerResult ContainersIndexed; 

  const VarDecl *TargetVar; 

 
And finally, we will need a way to traverse the body of a for loop. 
 public: 
  bool findUsages(const Stmt *Body) { 

    TraverseStmt(const_cast<Stmt *>(Body)); 

    return OnlyUsedAsIndex; 

  } 

 

  // Methods for AST traversal 

  bool TraverseArraySubscriptExpr(ArraySubscriptExpr *ASE); 

  bool VisitDeclRefExpr(DeclRefExpr *DRE); 

  bool VisitDeclStmt(DeclStmt *DS); 

}; 

 
Add a few accessors and a constructor, and you will have the code in LoopActions.h. 
 
Next, we need to implement the interesting part: deciding if our index variable TargetVar is 
actually only used as an array index. The first step will be disallowing all DeclRefExprs referring 
to the TargetVar by setting OnlyUsedAsIndex to false should we encounter it. 
bool ForLoopASTVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { 

  const ValueDecl *TheDecl = DRE->getDecl(); 

  if (areSameVariable(TargetVar, TheDecl)) 

    OnlyUsedAsIndex = false; 

  return true; 

} 

 
Of course,  we explicitly allow references to TargetVar if they are as the index of an 
ArraySubscriptExpr. We therefore intercept the traversals of ArraySubscriptExprs, and 
make sure that the index is not visited if we consider it to be a valid use of TargetVar. 
bool ForLoopASTVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *ASE) { 



  const Expr *Arr = ASE->getBase(); 

  if (isValidSubscriptExpr(ASE->getIdx(), TargetVar, Arr)) { 

    const Expr *ArrReduced = Arr->IgnoreParenCasts(); 

 

We keep track of the arrays TargetVar is used to index. 
    if (!containsExpr(Context, &ContainersIndexed, ArrReduced)) 

      ContainersIndexed.insert(ArrReduced); 

 

Since we consider this a valid (convertible) use of TargetVar, we prune the AST traversal by 
not calling VisitorBase::TraverseStmt(). 
    Usages.push_back(ASE); 

    return true; 

  } 

If we didn't decide that the ArraySubscriptExpr was exactly what we were looking for, continue 
the recursive traversal. 
  return TraverseStmt(Arr) && TraverseStmt(ASE->getIdx()); 

} 

This implementation relies on two helper functions: isValidSubscriptExpr(), which checks 
to see if the index of an ArrayIndexExpr was TargetVar, and containsExpr(), which checks to 
see if our collecion of indexed arrays contains an expression equivalent to the discovered array. 
 
With our RecursiveASTVisitor built, all we need to do is use it. Some simple adjustments to the 
end of LoopPrinter::run() can exercise the new functionality. 
 
 
// in LoopPrinter::run() { 

  ForLoopASTVisitor Finder(Context, LoopVar); 

  if (!Finder.findUsages(FS->getBody())) 

    return; 

 
If we make it here, then LoopVar was only used as an array index, if at all. Did it index into 
exactly one array? 
  const ForLoopASTVisitor::ContainerResult &ContainersIndexed = 

      Finder.getContainersIndexed(); 

  if (ContainersIndexed.size() != 1) 

    return; 

 

At this point, we know that there was exactly one array. We now need to make sure that it has 
the correct length. 
  const Expr *ContainerExpr = *(ContainersIndexed.begin()); 

  if (!arrayMatchesConditionExpr(Context, ContainerExpr->getType(), 

                                 BoundExpr)) 

    return; 



 

  llvm::outs() << "Discovered translatable loop: index variable is " 

               << LoopVar->getNameAsString() << ".\nArray expression is: "; 

  ContainerExpr->dump(); 

  llvm::outs() << "\n"; 

} 

 

The helper function arrayMatchesConditionExpr() checks to see if the integer bound 
BoundExpr is a compile-time constant equal to the array's length. It fiddles with the 
llvm::APInt and llvm::APSInt classes, comparing the two compile-time values by converting 
BoundExpr to an unsigned integer value, if possible . 10

 
Whew! We're finally done with this step, ready to try out our new code, available in array-step-4 
on some more loops! 

Step 5: Editing The Source Code 
The next touch is to modify the existing source code through the tooling::Replacements 
class. We can use the Replacements& reference provided by the RefactoringTool created in the 
main function (in LoopConvert.cpp), simply by adding a Replacements& member to LoopPrinter. 
Come to think of it, LoopPrinter isn't a wonderful name for the class any more, since it will 
actually modify the source code of array-based loops when we're done with this step; I renamed 
it to LoopFixer. 
 
In LoopActions.h 
class LoopFixer : public MatchFinder::MatchCallback { 

 private: 

  tooling::Replacements &Replace; 

 

 public: 

  explicit LoopFixer(tooling::Replacements &Replace) : Replace(Replace) { } 

  virtual void run(const MatchFinder::MatchResult &Result); 

}; 

 
Note that we mark the constructor explicit to avoid accidental conversions; because we've 
added a parameter, the usage in LoopConvert.cpp also needs to be adjusted 
Replacements &Replace = LoopTool.getReplacements(); 

LoopFixer Fixer(Replace); 

10 This is because comparing a signed integer and an unsigned integer is always a bug at the "low" level 
of LLVM, as is comparing two integers of different bit widths. The length of an array is nonnegative, so we 
need to convert BoundExpr's value into an unsigned value - which can be done without losing precision 
by extending each to be one bit larger than the bigger of the two. 

http://llvm.org/doxygen/classllvm_1_1APInt.html
http://llvm.org/doxygen/classllvm_1_1APSInt.html


 
Most of the interesting work in this step is in creating a function to replace the text-dumping. 
Rather than printing some textual information about the loops, we will add a call to a new 
function: 
doConversion(Context, Replace, LoopVar, ContainerExpr, Finder.getUsages(), 

             FS); 

And now we need to define this doConversion. 
 
static void doConversion(ASTContext *Context, Replacements &Replace, 

                         const VarDecl *IndexVar, const Expr *ContainerExpr, 

                         const UsageResult &Usages, const ForStmt *TheLoop) { 

We need some method of choosing a variable name and ensuring that it does not conflict with 
existing declarations. For now, we'll just default to "elem". 
  std::string VarName = "elem"; 

 

First, replace all usages of the array subscript expression with our new variable. Clang 
represents the location of a piece of the AST with a SourceRange. 
  for (UsageResult::const_iterator I = Usages.begin(), E = Usages.end(); 
       I != E; ++I) { 

    SourceRange ReplaceRange = (*I)->getSourceRange(); 

    std::string ReplaceText = VarName; 

    Replace.insert(Replacement(Context->getSourceManager(), 

                               CharSourceRange::getTokenRange(ReplaceRange), 

                               ReplaceText)); 

  } 

 
  Now, we need to construct a new range expression. 
  SourceRange ParenRange(TheLoop->getLParenLoc(), TheLoop->getRParenLoc()); 

  StringRef ContainerString = 

      getStringFromRange(Context->getSourceManager(), Context->getLangOpts(), 

                         ContainerExpr->getSourceRange()); 

Finally, we designate the type of the variable as "const auto &" 
  QualType AutoRefType = 

      Context->getLValueReferenceType(Context->getAutoDeductType()); 

  std::string TypeString = AutoRefType.getAsString(); 

 

  std::string Range = ("(" + TypeString + " " + VarName + " : " 

                           + ContainerString + ")").str(); 

  Replace.insert(Replacement(Context->getSourceManager(), 

                             CharSourceRange::getTokenRange(ParenRange), 

                             Range)); 

} 

 

http://clang.llvm.org/doxygen/classclang_1_1SourceRange.html


And we're (almost) done. There's one last helper function to explain: getStringFromRange, 
which turns a SourceRange into its associated text in the source code, if the SourceRange 
consists of a start and end SourceLocation in the same file . 11

 
static StringRef getStringFromRange(SourceRange Range, 

                                    SourceManager &SourceMgr, 

                                    const LangOptions &LangOpts) { 

Source Files are identified by a FileID, and are managed by a SourceManager. 
  if (SourceMgr.getFileID(Range.getBegin()) != 

      SourceMgr.getFileID(Range.getEnd())) 

    return NULL; 

  CharSourceRange SourceChars(Range, true); 

  return Lexer::getSourceText(SourceChars, SourceMgr, LangOpts); 

} 

With that, our simple array-based loop converter is complete, and found in array-step-5. 

Step 6: Adding FileCheck Tests 
The Clang test suite includes just over 5000 tests, and Clang developers are unlikely to accept 
any new code unless it comes with tests. Thankfully, there is an almost-painless way to write 
tests as annotated C++ files using the LLVM test infrastructure. If we drop a test in the test/ 
directory within Clang's repository, it will automatically be included in the test suite. 
$ vim clang/test/Tooling/loop-convert-array.cpp 

First, we need to instruct Clang how to run the test. The lines beginning with RUN: are 
almost-shell scripts, the main difference being that a few substitutions are made. In this 
example, 

●​ %t is replaced with the name of a temporary file 
●​ %s is replaced by the name of the current file (i.e. loop-convert-array.cpp) 

We run the test's source code through grep to remove any of the commented annotations. 
// RUN: rm -rf %t.cpp 

// RUN: grep -Ev "//\s*[A-Z-]+:" %s > %t.cpp 

// RUN: loop-convert . %t.cpp -- && FileCheck -input-file=%t.cpp %s 

// RUN: rm -rf %t.cpp 

This test will focus on positive changes - loops that should be converted. There are five tests 
included in the example, intended to cover particular cases. 

●​ The first test uses the index as an r-value 
●​ The second test uses the index as an l-value 
●​ The third test uses a more complicated expression as the array bound 
●​ The fourth test uses a more complicated expression as the array 
●​ The fifth test calls a member function on an array of structs 

11 Using #include, we can create expressions where this is not the case. 

http://llvm.org/docs/TestingGuide.html


We will walk through instrumenting a few of the loops for testing. 
Consider this snippet: 
  const int N = 6; 

  int arr[N] = {1, 2, 3, 4, 5, 6}; 

  for (int i = 0; i < N; ++i) { 

    sum += arr[i]; 

  } 

We expect the loop to be converted to something along the lines of 
  for (auto & VARNAME : arr) { 

    sum += VARNAME; 

  } 
Clang uses FileCheck to run these tests, so we need to add a line to describe our expectations. 
FileCheck allows us to specify a particular sequence of strings that should (or should not) occur 
in the output of our command. The checks for this loop are 
 // CHECK: for (auto & [[VAR:[a-z_]+]] : arr) 

 // CHECK-NEXT: sum += [[VAR]]; 

 // CHECK-NEXT: } 

This example illustrates several useful FileCheck properties. First, FileCheck allows us to 
capture a regular expression  and use it later. The text [[VAR:[a-z_]+]] matches against the 12

regular expression [a-z_]+, saving the text to a variable named VAR. The next line references 
VAR (by surrounding the variable name with double brackets); regexes that do not need to be 
saved can be placed in double braces {{like this}}. 
Finally, the CHECK directive instructs FileCheck to find the string after the colon and issue an 
error if it's not found. FileCheck also requires that the order of your CHECKs be followed: each 
CHECK is attempted from the end of the last successful CHECK. Additionally, it's possible to 
require that the matching line be the next line, using CHECK-NEXT. 
 
It is also important to write negative tests, which capture instances that should not be modified. 
Some examples include computations done with the indices, loops with empty bodies, and 
loops whose array bounds don't match correctly. The RUN: header for negative tests is identical 
to the RUN lines for the positive tests, though they are implemented with a single CHECK line: 
  // CHECK-NOT: for ({{.*[^:]:[^:].*}}) 

This line instructs FileCheck to verify that the supplied regex is not matched, namely that there 
are no for loops that contain a single colon on the inside of the loop parentheses . Any 13

converted loops would be written with range-based syntax, which includes a single colon. You 
should copy one of the loops from the positive tests over to the negative test to make sure that it 
fails. 
The entire Clang test suite can be run from your llvm_build directory with the command 

13 Remember, :: is a perfectly valid construct. 

12 I'm not sure which kind of regular expressions (perl? grep? grep -E? vim? sed?), so it can take a few 
tries. 

http://llvm.org/docs/TestingGuide.html#FileCheck


$ ninja clang-test  14

One last touch would be modifying test/CMakeLists.txt to include loop-convert as a dependency. 
Look for the line which begins with "add_dependencies(clang-test". 
Tests are included in array-step-6. 

Epilogue: Finalizing the Tool 
That's it! 
Wait a minute, you ask, are these conversions safe? The answer is "yes, usually." One can 
imagine the (somewhat evil example) of intentionally calling a function that swaps which arrays 
a variable refers to in the middle of the loop, or on another thread. C++11 range-based for loops 
will continue iterating over the original array referred to at the beginning of the loop, though the 
original code would index into the new array after the swap. While it is conceivable that we 
could detect such problems, it would require a def-use analysis of each iterated array, which is 
not always possible to do perfectly . The general advice will be to migrate potentially 15

problematic code manually. 
 
Actually, this tool is less correct than it should be. 

●​  It can potentially try to write conflicting replacements to source code, which is not 
handled correctly by Replacements. 

●​ It  does not verify that the variables it introduces do not conflict, particularly in nested 
loops where it uses the same name 

●​ The resulting code is not automatically recompiled with the -std=c++11 flag added. 
●​ The array can be manipulated as stated above 

These changes add far more complexity than I felt should be added at this point, though all four 
are addressed in the more complete version of the loop converter . 16

 
I also deliberately left a simple bug in the array converter - a loop such as this one will not be 
converted: 
 const int N = 2;​
  int arr[N];​
  int res = 0; 

 for (unsigned i = 0; i < N; ++i) {​
    res += arr[i] + 1;​
  }​
We therefore end this tutorial with an exercise: look at the AST for the above loop, and figure 
out why it is not converted (Is it the matcher? the AST visitor? the logic executed between the 
two?). Then add a positive unit test to to confirm that the original code did not migrate this loop, 
but the new code does. 

16 To the extent that the array changing out from under the loop directly in its own body. 

15 Consider a templated function that takes two pointers to arrays of size N... 

14 Yes, I understand that you're paying attention and that this was stated at the beginning of the tutorial. 



 
Hopefully this tutorial has provided enough basic knowledge about developing refactoring tools 
with Clang. Now go make C++ development even more awesome with what you've learned! 
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