
JPEG XL Decoding Support using
jxl-rs

This Document is Public​
Authors: helmut@janschka.com​

November 2025

One-page overview
Add JPEG XL (JXL) image decoding support to Chromium using jxl-rs, a pure Rust decoder.
This enables native rendering of .jxl images which offer 30-50% better compression than
JPEG, lossless JPEG transcoding, progressive decoding, and animation support. Using a Rust
decoder provides memory safety guarantees for image parsing, reducing attack surface
compared to C++ alternatives.

Platforms
Mac, Windows, Linux, Chrome OS, Android, Android WebView.

Team

●​ Author: Helmut Januschka

Bug
https://issues.chromium.org/issues/462919304

CL
https://chromium-review.googlesource.com/c/chromium/src/+/7184969
.

Code affected

●​ Blink image decoders - New JXLImageDecoder class
●​ Media build configuration - ENABLE_JXL_DECODER flag
●​ CC paint/tiles - ImageType enum, decode cache
●​ Third-party Rust crates - jxl-rs and dependencies
●​ Third-party jxl-rs C API - FFI wrapper for Rust decoder

mailto:helmut@januschka.com
https://issues.chromium.org/issues/462919304
https://chromium-review.googlesource.com/c/chromium/src/+/7184969

Design

Architecture Overview
This implementation adds JPEG XL decoding support to Chromium using jxl-rs, a pure Rust
decoder.
 JXL is integrated at the Blink ImageDecoder level (following the same pattern as AVIF,
WebP, GIF, and animated PNG) rather than through Skia's codec API. This integration point
is necessary because:

1.​ Animation support: JXL animations require frame-by-frame decoding with precise
timing control and frame caching. The Blink ImageDecoder API provides
DecodeFrameCount(), FrameDurationAtIndex(), FrameTimestampAtIndex(),
and ClearCacheExceptFrame() specifically designed for animated formats. While
PNG's animation support (APNG) is relatively simple, JXL animations can have
complex frame dependencies and variable frame durations that benefit from Blink's
animation framework.

2.​ Progressive rendering: JXL supports progressive decoding where the image quality
improves as more data arrives. Blink's ImageDecoder API supports this through
OnSetData() and FrameIsReceivedAtIndex(), allowing images to render
incrementally as data streams over the network. Skia's codec API is primarily
designed for complete images.

3.​ Decoder state management: Unlike PNG (which decodes row-by-row), JXL uses a
stateful decoding process that requires coordination between metadata parsing and
frame decoding. The Blink ImageDecoder pattern provides explicit control over
decoder lifecycle through DecodeSize(), DecodeFrameCount(), and Decode()
phases that match JXL's architecture.

Why PNG could use Skia but JXL cannot: PNG's integration into Skia was feasible
because: (a) PNG animations (APNG) have simple frame timing and no inter-frame
dependencies, (b) PNG's row-by-row decoding maps cleanly to Skia's incremental codec
APIs, and (c) PNG is used across many Skia clients (Android, Flutter, etc.) making Skia-level
integration beneficial. JXL's more complex animation model and Chromium-specific
requirements make Blink-level integration more appropriate.

The architecture consists of two main components

Feature Support
JPEG XL offers advanced imaging capabilities beyond basic compression. Support status for
key features:

Feature Status Implementation Details

Animation ✅ Supported Frame-by-frame decoding
via DecodeFrameCount(),

Progressive rendering 🛑 Unsupported for now Once jxl-rs supports it.
Progressive decoding will
use jxl-rs's internal
sophisticated non-separable
upscaling for DC data,
matching the behavior of
progressive legacy JPEGs
(libjpeg-turbo). This avoids
intermediate buffers in
Chromium. Adding support
tracked by progress bug.

Wide gamut color ✅ Supported ICC profile extraction +
F32→F16 pipeline

10/12-bit color depth ✅ Supported All bit depths
(8/10/12/16-bit)

HDR (PQ/HLG/21496-1) ✅ Supported All HDR content (PQ/HLG)
supported via ICC profile
extraction + F32→F16
pipeline. Gainmap support
is now available in an
upstream PR. We will
integrate this once merged.
PR

Alpha channel ✅ Supported RGB and alpha decoded
separately, interleaved

Lossless JPEG
recompression

✅ Supported jxl-rs decodes both lossless

http://crbug.com/463925507
https://github.com/libjxl/jxl-rs/pull/504

Component 1: JXLImageDecoder (C++)
Location: third_party/blink/renderer/platform/image-decoders/jxl/

A new JXLImageDecoder class that extends Blink's ImageDecoder base class:

●​ Handles integration with Chromium's image loading pipeline
●​ Manages progressive decoding and animation state
●​ Converts decoded pixels to Skia-compatible formats
●​ Implements frame caching for smooth animation playback

Component 2: jxl-rs C++ Bridge (Rust + cxx codegen)
Location: third_party/jxl-rs/src/

A type-safe C++/Rust bridge using the cxx library.

What cxx generates:

●​ C++ header: lib.rs.h with type definitions (JxlRsDecoder, JxlRsBasicInfo,
JxlRsStatus, etc.)

●​ FFI implementation: lib.rs.cc with glue code between C++ and Rust
●​ Type-safe wrappers: rust::Box<T> for ownership, rust::Slice<T> for

zero-copy array views

Key responsibilities:

●​ Decoder lifecycle management:
-​ Factory: jxl_rs_decoder_create() returns rust::Box<JxlRsDecoder>
-​ State machine: set_input() → process() → get_basic_info() /

get_pixels()
-​ Automatic cleanup: rust::Box handles destruction

●​ Pixel format conversion:

-​ Internal: Always f32 RGB (separate from alpha) in linear color space
-​ Output formats:

-​ Rgba8: f32 [0.0–1.0] → u8 [0–255] with clamping

https://cxx.rs/

-​ Rgba16: f32 [0.0–1.0] → u16 [0–65535] with clamping
-​ RgbaF32: Direct f32 (preserves HDR values >1.0)

●​ Alpha channel handling:

-​ Decodes RGB and alpha into separate buffers (per JXL spec)
-​ Interleaves during get_pixels(): [R,G,B,A,R,G,B,A,...]
-​ Defaults to opaque (255/1.0) if no alpha channel

●​ Panic safety:

-​ Chromium compiles all Rust with -Cpanic=abort, so panics terminate the

process immediately
-​ No catch_unwind() needed - panics are prevented upstream in jxl-rs

Data Flow
●​ Blink receives image data → JXLImageDecoder::OnSetData()
●​ Signature check via jxl_rs_signature_check() (12-byte header)
●​ Decoder processes input → emits BasicInfo, Frame, FullImage events
●​ ICC profile extraction → SetEmbeddedColorProfile() for color management
●​ Pixel format selection based on image characteristics:

○​ High bit depth (10/12/16-bit), HDR (PQ/HLG), or wide gamut (Display P3,
Rec.2020):

■​ jxl-rs outputs F32 linear RGB → convert to F16
■​ Preserves extended range values >1.0 for HDR
■​ No clamping during conversion

○​ Standard 8-bit sRGB:
■​ jxl-rs outputs F32 linear RGB → convert to U8
■​ Clamp [0.0-1.0] → map to [0-255]

●​
●​ Pixels written to Skia ImageFrame (kRGBA_F16 or kN32 format)
●​ For animations: frame durations extracted, caching prevents re-decode

Key Design Decisions

Pure Rust decoder: Uses jxl-rs instead of libjxl (C++) for memory safety and reduced attack
surface in image parsing code.

HDR support: HDR images (PQ/HLG transfer functions) are decoded with ICC profile
extraction and extended range values preserved in f16 format. Tone mapping is handled
dynamically by Chromium's color management system (not at decode time), allowing
content to adapt to display capabilities and CSS attributes (e.g.,
https://mdn.github.io/dom-examples/dynamic-range-limit/).

Why jxl-rs

●​ Upstream alignment: jxl-rs is maintained in the same GitHub
organization/namespace as libjxl, the official reference implementation. This
suggests tighter coordination with the core JPEG XL maintainers and improves
long-term compatibility with the evolving spec.​

●​ Browser-proven: It is the same Rust JPEG XL implementation already integrated in
Firefox, demonstrating production readiness for browser environments.​

●​ Active development: jxl-rs has higher recent activity, more frequent updates, and
faster turnaround on fixes compared to jxl-oxide.​

●​ Better feature and performance maturity: It more closely tracks the reference
implementation, including optimizations and optional features.​

●​ Integration benefits: Its API surface and design fit well with Chromium’s Rust FFI
patterns and error-handling expectations.​

Metrics

Success metrics
Functional parity:

●​ JXL images render correctly across all supported bit depths (8/10/12/16-bit)

https://mdn.github.io/dom-examples/dynamic-range-limit/

●​ Animations playback smoothly with correct timing and frame recovery under load
●​ Progressive rendering works as data streams in
●​ Color management correctly handles wide gamut (Display P3, Rec.2020) via ICC

profiles
●​ HDR content (PQ/HLG) displays correctly using f32 pipeline
●​ No crashes from malformed files (validated via fuzzing)

Usage tracking:
WebDX use counter: WebFeature::kJXLImage / WebDXFeature::kJxl

○​ Tracks when JXL images are successfully decoded and displayed
○​ Incremented when image size becomes available (metadata parsed)
○​ Visible in chrome://histograms and chromestatus.com metrics
○​ Helps measure adoption and justify feature value

Performance targets:

●​ Match libjxl’s performance
●​ Automate periodic tests of performance, to track progress over time
●​ Memory usage within acceptable limits (monitored via max_decoded_bytes)
●​ No regressions in page load metrics (LCP, FCP)

Regression metrics
Performance:

●​ Blink.ImageDecoders.DecodeTime - JXL decode timing vs. other formats
●​ Renderer4.ImageDecodeTaskDurationUs.Jxl.Gpu - JXL-specific decode metric
●​ Web Vitals (LCP, FCP) - Page load impact

Memory:
●​ Memory.Renderer.PrivateMemoryFootprint - Renderer memory footprint
●​ Decoder enforces max_decoded_bytes limit to prevent OOM

Binary size:
●​ ~3-5 MB added (release APK, compressed)

Experiments

Build Flag
●​ enable_jxl_decoder = use_blink in media/media_options.gni

https://chromestatus.com

●​ Can be disabled per-platform

Runtime Feature (Kill-Switch)
Note: We cannot use runtime_enabled_features.json5 because RuntimeEnabledFeatures
don't support conditional compilation with build flags - the feature must always be compiled in,
which conflicts with BUILDFLAG(ENABLE_JXL_DECODER).

●​ Feature: kJXLImageFormat in
third_party/blink/public/common/features.h

●​ Status: base::FEATURE_ENABLED_BY_DEFAULT
●​ Control: Can be disabled remotely via Finch without code push

Rollout Plan

Kill Switch
●​ Fast: Disable kJXLImageFormat via Finch experiment
●​ Targeted: Can disable per-platform, per-channel, or per-user cohort
●​ Fallback: Disable build flag in future release if needed

Metrics Monitored
●​ Usage: WebDX counter (kJxl)
●​ Performance: Renderer4.ImageDecodeTaskDurationUs.Jxl
●​ Memory: Memory.Renderer.PrivateMemoryFootprint
●​ Stability: Crash reports, fuzzer coverage

Core principle considerations

Speed
This change adds a new image decoder but does not modify existing code paths for other
image formats. Performance impact is isolated to pages that serve JXL images.

Simplicity
No user-facing UI changes. This is a transparent capability addition. Users will simply see
JXL images render correctly where they previously saw broken images or download
prompts.

Security

CL includes a fuzzer.

Threat Model
Image decoders are a critical attack surface because they:

●​ Process untrusted data from the network
●​ Run in the renderer process
●​ Parse complex binary formats
●​ JPEG XL is a particularly complex format with entropy coding, color transforms, and

animation support, all potential sources of vulnerabilities.

Mitigations:

●​ Memory Corruption -> jxl-rs uses Rust's memory safety for the bulk of its complex
parsing logic, providing a significant reduction in attack surface compared to C++
alternatives. While the decoder strives for pure safety, it contains a minimal,
tightly-scoped amount of unsafe code (both in the core crate and the jxl_simd crate)
for performance-critical operations like SIMD intrinsics and low-level memory
handling. These constrained blocks are subject to strict security review.

●​ C++ boundary issues -> base::span

Followup work
Implement progressive rendering, start by making sure upstream jxl-rs is supporting it.
Plumb it down to the image decoder once it’s in the jxl-rs. This PR is blocked right now.

Follow work on PRs: https://github.com/libjxl/jxl-rs/pulls/hjanuschka
The PR’s there are optional, but nice to have and will improve chromium integration overall.

https://github.com/libjxl/jxl-rs/pull/497
https://github.com/libjxl/jxl-rs/pulls/hjanuschka

	JPEG XL Decoding Support using jxl-rs
	One-page overview
	Platforms
	Team
	Bug
	CL
	Code affected

	Design
	Architecture Overview
	Feature Support
	Component 1: JXLImageDecoder (C++)
	Component 2: jxl-rs C++ Bridge (Rust + cxx codegen)
	Data Flow
	Key Design Decisions
	Why jxl-rs

	Metrics
	Success metrics
	Regression metrics
	Experiments
	Build Flag
	Runtime Feature (Kill-Switch)

	Rollout Plan
	Kill Switch
	Metrics Monitored

	Core principle considerations
	Speed
	Simplicity
	Security

	Followup work

