Satellite Payloads 2025-2026 - Lesson's log

#	date	time	Торіс	Teaching material
	23/09/205	13:00-	- Introduction to the course, web page, teaching	Slides:
сом	Room 5	15:00	material, "in itinere" tests and final exam structure	01_Payload_intro
#01-02			- The three main payload categories: TLC, Satellite	https://youtu.be/V6jgJVHagno
			Navigation, and Earth Observation.	neeps, / y cutu.se/ y ojgs v nagno
			- Common characteristics, specific orbital	
			requirements, and peculiarities.	
			- Example of Satellite Communication Systems	
			- Geostationary satellites, Sir Clarke, example: the	
			Inmarsat constellation	
	25/09/2025	10:00-	- Lecture postponed	
	Room 41	12:00		
	25/09/2025		- Lecture postponed	
		14:00		
		11:00-	- Lecture postponed	
	Room 10	13:00		
COM	20/00/2025	12,00	Clobal Antonna Doom from CEO MEO LEO	Slides:
COM #03-04	30/09/2025 Room 5	15:00	- Global Antenna Beam from GEO, MEO, LEO: Beamwidth and Gain. Beamwidth to Gain	02_Payload_link_budget_intro
#03-04	Nooiii 3	15.00		
			relationship for symmetric conical antenna beams.	https://youtu.be/tdVgyl9S1NQ
			- % of coverage of the Earth surface from the different orbits	
			- Equation for the received density and received	
			power. Impact of the ground receiving antenna	
			equivalent area on the required satellite transmitted	
			power Comparison of received power density from GEO,	
			MEO, LEO global beams	
			- Beam persistence from GEO, MEO, LEO	
			- Approximate antenna directivity/gain for rectangular	
			and elliptical antennas	
			- Gain vs Aperture: received power formulation;	
			- EIRP merit figure;	
			- Directional antennas: beam steering/attitude control	
			requirements	
сом	02/10/2025	10:00-	- EIRP, Path Loss, equations for received power	Slides:
#05-06	Room 41	12:00	- RF Receiver scheme	
			- Filtering needs at RF: reducing global power to be	03_Payload_matched_filter
			amplified, reduce noise power	https://youtu.be/q1KUhA6qMtU
			- Noise Power Spectral Density,	https://youtu.se/qikon/oqivito
			- Noise in ideal BPF, noise in generic filter	
			- Equivalent noise bandwidth and evaluation of noise	
			power	
			- Equivalent Base Band transfer function of RF filters	
			- Equivalent noise bandwidth evaluation based on the	
			equivalent BB transfer function	
			- Signal-to noise ratio	
			- Optimizing the Equivalent BB transfer function of the	
			receiver to provide maximum output SNR	

GNSS #01-02	02/10/2025 Room 9	12:00- 14:00	 Principles of operation of the global navigation satellite systems 	Slides: GNSS_01_2025_principles_v7
#01-02	KOOIII 9	14.00	 Positioning in 1D, 2D, 3D and the required hypotheses 	https://youtu.be/XHIQnYfhnos
			 Pseudorange measurements, clock errors and synchronization problems. 4D solution and PVT estimation 	
RAD	03/10/2025	11.00-	- Introduction to space-based radar systems and to	Slides:
	Room 10	13:00	the ground-based radar for space surveillance. - Radar principle, - Radar equation, dynamic range; - pulsed vs. CW radar; blind range - The radar detection. And its performance	21_Payload_2024_Radar_fundam entals https://youtu.be/GZkf3v9gZLE
			parameters - The power problem for the detection in the far-range and the need to increase SNR / received echo energy	
	07/10/2025 Room 5	13:00- 15:00	 Maximum achievable SNR as energy over Noise power spectral density Constant envelope signals and maximum energy Optimizing the filter transfer function of the receiver to provide maximum output SNR 	Slides: 03_Payload_matched_filter
			 Derivation of the Matched Filter Transfer (MF) function Interpretation of the resulting H(f) in the frequency domain 	https://youtu.be/FMitgTq9VVc
сом	09/10/2025	10:00-	- Need of the delay t ₀ >= pulse length to make the MF	Slides:
#09-10	Room 41	12:00	causal - Signal at the output of the matched filter and of the inverse filter in frequency domain and in time domain	03_Payload_matched_filter 05_Payload_ISI
			 MF output as a translated and scaled waveform autocorrelation Behaviour of the rect pulse Compression of pulses with B>> inverse of duration BB digital modulator basics Mapping binary streams into sequence of symbols; 	https://youtu.be/P4tt4TVxJqA
			symbol rate vs bit rate - Level generation and their distance - Transmit pulse shaping and the possibility of intersymbolic interference	
GNSS #03-04	09/10/2025 Room 9	12:00- 14:00	 Clock scheme and oscillator models Clock errors: its behavior and its correction Transferring the required data to the user receivers: 	Slides: GNSS_01_2025_principles_v7
			 predictions, fitting to parametric functions, upload and update every 2 hours. Estimation of satellite positions and clock errors from the Earth: Reference/Monitor stations, Master Control Station and the inverse GNSS equations. Global structure of the Ground Segment. 	https://youtu.be/MSM2WBE5dPs
	10/10/2025 Room 10	11:00- 13:00	 Use of long pulses is required to improve SNR SNR improvement using a rect pulse K times longer: Increased SNR interpreted as (i) K times more 	Slides: 21_Payload_2024_Radar_fundam entals

СОМ	14/10/2025		energy, which provides improved Matched fuilter output 2E/No; (ii) rect pulse has the same received power level, but K times narrower noise bandwidth (1/tauP); - Increased blind range - the Range resolution: evaluation for a rect pulse - Importance of range resolution in surveillance and imaging sensors. - Ground-range resolution for imaging radar - Need for long compressible pulses to provide at the same time high energy and high range resolution - Digital transmission using a basic pulse shape: rect	https://youtu.be/EagisOlj6H4 Slides:
#11-12	Room 5	15:00	 pulse, matched filtering and sampling on receive. Global Transfer function of the TX-Channel-RX Effect of the global transfer function and the problem of the InterSymbolic Interference (ISI) Zero ISI condition in time and frequency domain Symmetric characteristic of the Zero-ISI Transfer Function Symmetric characteristic of the Zero-ISI Transfer Function Minimum bandwidth, triangular and trapezoidal shape function Splitting the raised-cosine shape between TX and RX filter to apply matched filtering 	03_Payload_matched_filter 05_Payload_ISI 04_Payload_Noise https://youtu.be/f-asW4DWBbc
COM #13-14	16/10/2025 Room 41	10:00- 12:00	 Description of the Global digital transmission scheme: Coding – Modulation – Transmission – Demodulation – Decoding The 3 phases of the Coding (& Decoding): Source Coding; Encryption, Channel Coding with their purposes. Mapping and demapping: from bit sequences to points in the I&Q constellation plane Mapping binary streams into sequence of symbols; symbol rate vs bit rate PSK constellations, QAM constellations Satellite APSK constellations 	Slides: 03_Payload_matched_filter https://youtu.be/3g6ELikHfCl
#05-06	16/10/2025 Room 9 PL	14:00	 Keplerian orbits and GNSS ephemeris Satellite position reconstruction from Keplerian parameters (also with corrections) The three Segments: Space, Ground and User Initial idea of global positioning performance Navigation message structure and timing 	Slides: GNSS_01_2025_principles_v7 https://youtu.be/BJUU-8eWWFQ
RAD #05-06	17/10/2025 Room10	11:00- 13:00	 At MF output rect becomes a triangle; high resolution requires wide bandwidth waveforms; Search for long, constant envelope waveforms that provide a high compression ratio Search for waveforms with high compression ratio: the phase modulation (discrete or analog) and the different ways to obtain a wide band waveform Phase codes. Example of the Barker codes providing compression Barker codes: properties of their autocorrelation especially for sidelobes; problems in the presence of Doppler frequency 	Slides: 21_Payload_2024_Radar_fundam entals 22_Radar_pulse_compression https://youtu.be/-K-fmT1YEng

сом	21/10/2025	13.00-	- Satellite APSK constellations	Slides:
#15-16	Room 5	15:00	- I&Q modulator	
			- I&Q demodulator	
			- Carrier phase shift caused by the propagation	02_Payload_link_budget_intro
			delay in the ideal propagation channel	04_Payload_Antenna
			- Doppler frequency; its presence in the received	. , , , , , , , , , , , , , , , , , , ,
			signal and its effect on the output of the I&Q	https://youtu.be/rhyAv4kFj7Y
			demodulator	
			- Need for a phase estimation (Phase Lock Loop) to	
			synchronize the I&Q demodulation	
			- Mapping and demapping: from bit sequences to	
			points in the I&Q constellation plane	
сом	23/10/2025	10:00-	- D/A conversion with holding and bandwidth	
#17-18		12:00	requirements	
			- Pulse shaping & ISI avoidance	
			- Transmission filtering and emission mask	
			- Sample spectral emission mask for DVB-S	https://youtu.be/Admsk0cfbiE
			- Raised-cosine transfer function family and roll-off	
			parameter ,	
			- Equivalent Base Band transfer function of RF and	
			IF filters	
			- Global receiver Equivalent Base Band transfer	
			function	
GNSS	23/10/2025	12:00-	- Navigation Solution via Taylor series expansion	Slides:
#07-08	Room 9	14:00	- Selection of the initial guess	GNSS_02_atmosphere_and_soluti
	PL		- Derivation of matrix H	on
			- Iterative algorithm and stopping criterion	https://youtu.be/dwpWOxLGoKs
RAD	24/10/2025	11:00-	- Search for waveforms with high compression ratio:	Slides:
#07-08	•	13:00	the phase modulation (discrete or analog)	22_Radar_pulse_compression
			- Range resolution as a function of the pulse	
			bandwidth and the different ways to obtain a wide	, , , , , ,
			band waveform	https://youtu.be/vHTyWckTqzE
			- Chirp signal to guarantee a desired bandwidth: its	
			frequency and phase characteristic	
			- Spectrum of the Chirp waveform	
			- Ideal compressed chirp waveform: MF output and	
			sidelobes	
сом	28/10/2025	13:00-	- Temporal and spectral characteristics of thermal	Slides:
#19-20	Room 5	15:00	noise	04_Payload_Noise
	· · · ·		- Equivalent thermal noise level at the receiver input	
			- Thermal noise power and SNR definition Real vs.	https://youtu.be/PIYnnoaDBCg
			ideal noiseless receiver; noise contribution from the	
			receiver	
			- Equivalent noise temperature	
			- G/T merit figures;	
			- Noise Figure and SNR degradation	
			- noise figure for cascaded devices	
			- Equivalent noise Temperature for cascaded devices	
			·	

COM #21-22	30/10/2025 Room 41	10:00- 12:00	 Antenna Noise temperature as combination of cosmic background, atmosphere, antenna and waveguide Level of the contributions to the antenna noise from ITU 372 System noise at different ports of the receiver Example of System temperature evaluation and improvement with cryogenic receivers Nonlinear amplifiers, AM/AM and AM/PM distortion of Power amplifiers and the need of backoff & predistorsions 	Slides: 04_Payload_Noise 07_Nonlinear https://youtu.be/M OHd3Wvr3Y
GNSS #09-10	30/10/2025 Room 9 PL	12:00- 14:00	 Usage of GNSS waveforms for ranging Requirements for GNSS waveforms: maximum energy and bandwidth FDMA, TDMA, CDMA Orthogonality of the waveforms and their separation in the code-domain MLS codes and their generation with shift registers 	Slides: GNSS_03_signal.pdf https://youtu.be/QZt6VIFLdao
	31/10/2025 Room 10	11:00- 13:00	 Compressed chirp waveform: MF output and sidelobes Fresnel sidelobes Sidelobe Control filters and its effects Spectral windows and their performance Design with spectral windows General problems in the presence of Doppler frequency 	Slides: 22_Radar_pulse_compression https://youtu.be/cwr7n3_sjw0
COM #23-24	04/11/2025 Room 5	13:00- 15:00	 Nonlinear amplifiers, 1dB compression point and AM distortion Intermodulation caused by the nonlinear devices and spectral contributions 2nd order and third order intermodulation products and their frequency allocation In-band contributions to be avoided from odd-order terms 	Slides: 07_Nonlinear https://youtu.be/m0ALl0hLP_A
COM #25-26	06/11/2025 Room 41	10:00- 12:00	 Evaluation of the dynamic range: signal to intermodulation ratio as a function of the input level OIP3 for system of cascaded blocks Receiver schemes: Direct I&Q receiver and its properties Motivation of the filter before LNA in the receive schemes The heterodyne receiver and its filtering stages Heterodyne receiver: filtering capability as % of the carrier frequency and the advantages of the 2 or 3 stage down-conversion scheme 	Slides: 07_Nonlinear 08_Receiver https://youtu.be/0UILU3Wq9BU
GNSS #11-12	06/11/2025 Room 9 PL	12:00- 14:00	 Properties of LMS and their cyclic autocorrelation Difference between autocorrelation and cyclic autocorrelation 	Slides: GNSS_03_signal.pdf https://youtu.be/byTteHNtKxw

#11-12		13:00	 Exercise of the evaluation of the cyclic autocorrelation Generation of the C/A codes and their properties Basic principle of the correlation receiver and its ability in discriminating the signals from the different satellites definition and sign of Doppler I&Q demodulation and residual Doppler Doppler frequency RADAR measurements and their resolution single-pulse and sequence Doppler measurement Frequency resolution Ambiguity Function: effect of Doppler with examples for rect, barker codes, Chirps 	Slides: 21_Payload_2024_Radar_fundam entals https://youtu.be/SKZh9sDTsq8
COM #27-28	11/11/2025 Room 5	13:00- 15:00	 the mirror frequency and the image removal filter before the down-conversion mixer Local oscillator and IF selection; High side and low side injection mixer operation The bent-pipe transponder scheme and its stages: the DVB-S bent-pipe transponder Basic mixer implementations: nonlinearity-based and switch circuit-based solutions Mixer spurious to affect the receive signal and its spur chart Mixer nonlinearity and OIP3 Structure of the bent-pipe satellite payload 	Slides: 09_Payload_Mixer 10_Payloads_2025_Transponder https://youtu.be/jpK6m9u7TbU
RAD #13-14	11/11/2025 Room DIET09	15:00- 17:00	 Sequences of radar pulses can provide: increased SNR and increased Doppler resolution Sampling return echoes Maximum range and range resolution. Pulse sequence transform in the absence and presence of Doppler frequency Filter adapted to pulse sequence H(f) of the filter adapted to the sequence of pulses Vector representation of the coherent integration Sequence-matched filter in the presence of Doppler and its approximate version with single-pulse matched filter implemented at zero Doppler. Choice of filters at k/NT and bench frequencies 	Slides: RADAR_03_coherent_pulse_integr ation_v2 https://youtu.be/jjEJOBolURA
COM #29-30	13/11/2025 Room 41	10:00- 12:00	 Structure of the bent-pipe satellite payload with multiple separately amplified channels Organization of the channels Use of circular right and left- handed polarization Bent pipe transponder scheme: global amplification, change of frequency channel separation before amplification Intermediate frequency selection Switch matrix for satellites with multiple beams Typical 4 reflectors, GEO TLC satellite 	Slides: 10_Payloads_2025_Transponder https://youtu.be/kfKwBbfi73Y

CNICC	12/11/2027	42.00	Cold codes	Clidos
GNSS #13-14	13/11/2025 Room 9 PL	12:00- 14:00	 Gold codes GPS carrier generation and frequency allocation Spectrum of GPS signal Block diagram of the GPS receiver Satellite signal search procedure in delay and Doppler frequency Time To First Fix and number of receiving channels Assisted GPS 	Slides: GNSS_03_signal.pdf https://youtu.be/qIY9Fax-YkU
COM #31-32	18/11/2025 Room 5	13:00- 15:00	 Applications served by Bent-pipe transponders: broadcast and fixed links (or limited flexibility) The SNR of up&downlink connection with the bent-pipe transponder Regenerative transponders scheme with digital demodulation and re-modulation. Performance of multiple links path with regenerative transponders global BER Applications served by regenerative transponders, allowing address management and satellite network operation: the LEO satellite mobile communication constellations The hertzian dipole antenna and its radiation characteristics in the far field 	Slides: 10_Payloads_2025_Transponder 11_Payload_Antenna_v3 https://youtu.be/knG_mj_R3xA
RAD #15-16	18/11/2025 Room DIET09	15:00- 17:00	 Field linear polarizations: V and H Doppler frequency and pulse-to-pulse phase variation Adapted filter and slow-time/fast-time matrix implementation Interpretation of the sequence-matched filter in the I&Q plane as a realignment of vectors before the sum filter bank at k/NT and FFT frequencies Ambiguity of the Doppler frequency using a sequence with selected PRF 	Slides: RADAR_03_coherent_pulse_integr ation_v2 https://youtu.be/Hw1wrzGpC9Q
COM #33-34	20/11/2025 Room 41	10:00- 12:00	 The hertzian dipole antenna and its radiation characteristics in the far field Field linear polarizations: V and H The dipole antenna pattern Uniform current case and sinc pattern Aperture of the beam Half-wavelength dipole Using the dipole as a basis for 1D and 2D antennas 	Slides: 11_Payload_Antenna_v3 https://youtu.be/iUkg_U1tRJc
GNSS #15-16	20/11/2025 Room 9 PL	12:00- 14:00	 Closed loop receiver operation for the accurate estimation of the pseudoranges (discriminator, waveform generator with NCO and loop filter) Propagation errors and their correction Effect of the atmosphere on the pseudorange measurements Analytical expression of the error as a function of the refraction index Tropospheric effects and compensation mask angle Effect of ionosphere on phase propagation 	Slides: GNSS_04_receiver GNSS_02_atmosphere_and_soluti on https://youtu.be/H_fEjRtpzgA

COM #35-36	25/11/2025 Room 5	15:00	Telemetry antennasAperture antennasReflector antennasPhased array antennas	Slides: 11_Payload_Antenna_v3
RAD #17-18	DIET09	17:00	 Lateral lobes of transverse filters/FFT and dynamics problem in detection Use of weighing nets for Doppler lobe control Weighing network effect, selection parameters, worst-case filter intersection loss Ambiguity in the range-Doppler plane, unambiguous area Relationship between cross-range position and Doppler frequency inside the antenna footprint Exploitation of Doppler resolution to provide cross-range resolution 	Slides: RADAR_03_coherent_pulse_integr ation_v2 RADAR_04_SAR_fundamentals
COM #37-38	27/11/2025 Room 41	10:00- 12:00	 De-mapping operation Noise at the output of the I&Q demodulator Joint PDF of the noise components and error probability dependent on the modulus Minimum distance criterion Decision regions and their definition Conceptual evaluation of the symbol error probability by integration of the joint PDF Probability of symbol error for the most common digital modulations: BPSK, QPSK & M-PAM by integration of the 2D Gaussian PDF Probability of symbol error for M-PSK and M-APSK From symbol error to bit error Expressions as a function of Eb/No Communication link sizing starting from BER 	Slides: 08_Payload_BER
GNSS #17-18	27/11/2025 Room 9 PL	12:00- 14:00	 correction with navigation message coefficient and exploiting dual-frequency measurements dispersivity of ionosphere and relationship between phase and group propagation speed and delay. Error budget for the pseudorange errors Positioning error vs pseudorange error and the Dilution of Precision (DOP) Positioning error covariance matrix derivation Positioning accuracy improvement by reducing the DOP: Geo, pseudolites, doubling constellation, joint use of multiple constellations 	Slides: GNSS_02_atmosphere_and_soluti on GNSS_05_accuracy

сом	02/12/2025	13.00	- Single parity bit for error detection	Slides:
#39-40	Room 5	15:00	 Single parity bit for error detection Automatic Retransmission Request in half & full duplex modes: PRO's and CON's Block codes and their characteristics Hamming distance between bit sequences Forward Error Correction exploiting redundancy bits Error detection and correction as a function of the Hamming distance Matrix implementation of block coding and decoding and the syndrome Perfect codes Synthetic Antenna approach, as alternative interpretation of cross-range resolution Synthetic Antenna aperture length, Synthetic beamwidth and synthetic footprint (ceross-range resolution) Improved Stripmap resolution with smaller antenna length 	Slides: RADAR_04_SAR_fundamentals
			 Maximum integration time and maximum cross-range resolution in STRIP-map mode Spotlight SAR mode 	
COM #41-42	04/12/2025 Room 41	10:00- 12:00	 Hamming codes and their ratio The cyclic code families: BCH and Reed-Solomon with their characteristics Convolutional codes: coding and decoding approaches Concatenated codes, Turbo-Codes and LPDC 	Slides: 11_Payload_Coding 13_Payload_Shannon
GNSS #19-20	04/12/2025 Aula 9 PL	12:00- 14:00	 Fixed and variable Geometry Positioning accuracy in 1D 2D and 3D Gaussian PDF characteristics 2D and 3D regions with High PDF values GNSS Positioning accuracy in 2D & CEP Probability ellipse and its derivation 	Slides: GNSS_05_accuracy
COM #43-44	09/12/2025 Room 5	13:00- 15:00	 Evaluation of BER with error correction coding and performance comparison of coding and modulation approaches. Mention to the Shannon Coding Theorem Example of the DVB-S standard receiving scheme Parameters for Global Beam operation in C-Band; Saturated power and transmit backoff, evaluation of EIRP, Free Space Losses (FSL) and received power in clear sky conditions. CNR in clear-sky conditions and margin SNR vs E/N_0 vs C/N_0 for the link budget description and relationship to the matched filter optimum output: matched filter gain G. Discussion of an Example of Link budget evaluation for GEO Global Beam downlink 	11_Payload_Coding 13_Payload_Shannon

	ı	1		1
			- Satellite elevation and coverage limitations when	
			requiring a non-zero elevation	
			- Global Earth coverage with minimum assigned	
			elevation angle	
			- A look at the Starlink constellation plan for global	
			coverage	
			- Evolution of the GEO DVB-S standards, including	
			variable coding and modulation schemes	
			- Adaptive Coding and ModulationM	
			- LEO Internet Satellites	
RAD	09/12/2025	15:00-	- Satellite iso-range and isodops: best antenna	Slides:
#21-22	Room	17:00	pointing strategy & left-right ambiguity	24_SAR_fundamentals.pdf
	DIET09		- Frequency change for the individual scatterer as a	
			function of slow time and the cross-range chirp	
			- Duration, bandwidth, slope and compression ratio of	
			the slow-time chirp	
			- Compression of the slow-time chirp to focus the SAR	
6014	44 /42 /2025	40.00	image and achievable resolution	Clides
COM	11/12/2025		-	Slides:
#45-46	Room 41	12:00		12_Payload_ACM_SatTV_and_Inte
				rnet
GNSS	11/12/2025	12:00-	- Performance parameters: Accuracy, Availability,	Slides:
#21-22	Room 9	14:00	Integrity and Continuity	GNSS_06_performance and Diff
			- Pseudorange error removal using Local Area	
			Differential approach: SV clock, ionospheric and	
			tropospheric errors	
			- Correction of equivalent error in the ephemeris	
			prediction and its effectiveness - Ground Based Augmentation System (GBAS) scheme	
			- Need for wide area correction for route navigation	
			and problems to extend corrections to a Wide Area	
			- WAAS & EGNOS	
			-	
	16/12/2024	13:00-		
	Room 5	15:00		
RAD	16/12/2024		- Chirp matched filter as a way to compensate the	Slides:
#23-24		17:00	time-varying Doppler of the chirp	22_Satellite_RADAR24
	DIET09		- Near field antenna interpretation of SAR quadratic	25_SAR_quality_parameters
			phase compensation - Changing slope and aperture inside swath, with	26_SAR_constellations
			constant Doppler Bandwidth	27_Radar_Altimetry_and_Soundin
			- Range cell migration	g
			- Range cell migration compensation	
			- Radar PRF: azimuth ambiguity, range ambiguity	
	18/12/2025	10:00-	-	Slides:
	Room 41	12:00		
CNCC	10/12/2025	12:00	Galiloo signals and interanerability with CDS	GNSS_07_Galileo
GNSS #23-24		12:00- 14:00	 Galileo signals and interoperability with GPS Galileo offered services 	GN33_07_Gallie0
#25-24	PL	14.00	Performance of the offered services	
	, L		- Galileo system architecture for integrity	
			- PRF selection diagrams	
			00.000.0	

	 Bounds for Radar PRF selection and bounds on antenna area and/or information Range cell migration and its compensation SAR quality parameters SAR Constellations Radar altimetry and Sounding
	 Range accuracy of surveillance function vs range accuracy of tracking function Examples where tracking radar require precision (prediction of location and time of impact of re-entry/launcher trajectory prediction) Angular accuracy of radar measurements (tracking vs surveillance High accuracy of angle estimation using antenna scan Monopulse antenna and its principle of operation Dependency of range and angular accuracies on SNR