What is JavaScript?

JavaScript is a dynamic computer programming language. It is lightweight and most
commonly used as a part of web pages, whose implementations allow client-side script
to interact with the user and make dynamic pages. It is an interpreted programming
language with object-oriented capabilities.

JavaScript was first known as Live Script, but Netscape changed its name to JavaScript,
possibly because of the excitement being generated by Java. JavaScript made its first
appearance in Netscape 2.0 in 1995 with the name Live Script. The general-purpose core
of the language has been embedded in Netscape, Internet Explorer, and other web
browsers.

The ECMA-262 Specification defined a standard version of the core JavaScript language.

JavaScript is a lightweight, interpreted programming language.

Designed for creating network-centric applications.

Complementary to and integrated with Java.

Complementary to and integrated with HTML.

Open and cross-platform.

The merits of using JavaScript are:

Less server interaction: You can validate user input before sending the page off to the
server. This saves server traffic, which means less load on your server.

Immediate feedback to the visitors: They don't have to wait for a page reload to see if
they have forgotten to enter something.

Increased interactivity: You can create interfaces that react when the user hovers over
them with a mouse or activates them via the keyboard.

Richer interfaces: You can use JavaScript to include such items as drag-and-drop
components and sliders to give a Rich Interface to your site visitors.

Limitations of JavaScript
We cannot treat JavaScript as a full-fledged programming language. It lacks the following
important features:

Client-side JavaScript does not allow the reading or writing of files. This has been kept
for security reason.

JavaScript cannot be used for networking applications because there is no such support
available.

JavaScript doesn't have any multithreading or multiprocessor capabilities.

Once again, JavaScript is a lightweight, interpreted programming language that allows
you to build interactivity into otherwise static HTML pages.
Syntax of java script
JavaScript can be implemented using JavaScript statements that are placed within the
<script>... </script> HTML tags in a web page.
You can place the <script> tags, containing your JavaScript, anywhere within you web
page, but it is normally recommended that you should keep it within the <head> tags.
The <script> tag alerts the browser program to start interpreting all the text between
these tags as a script. A simple syntax of your JavaScript will appear as follows.

<script ...>

JavaScript code

</script>
Example
<html>
<body>
<script language="javascript" type="text/javascript">
<!--
document.write ("Hello World!")
/1>
</script>
</body>
</html>
Variables of JavaScript :
Like many other programming languages, JavaScript has variables. Variables can be
thought of as named containers. You can place data into these containers and then refer
to the data simply by naming the container.
Before you use a variable in a JavaScript program, you must declare it. Variables are
declared with the var keyword as follows.
<script type="text/javascript">
<!--
var money;
var name;
/1>
</script>
You can also declare multiple variables with the same var keyword as follows:
<script type="text/javascript">
<!--
var money, name;
/->
</script>
Storing a value in a variable is called variable initialization. You can do variable
initialization at the time of variable creation or at a later point in time when you
need that variable.
For instance, you might create a variable named money and assign the value
2000.50 to it later. For another variable, you can assign a value at the time of
initialization as follows.

<script type="text/javascript">
<l

var name = "Ali";

var money;

money = 2000.50;

/->

</script>

Note: Use the var keyword only for declaration or initialization, once for the life of
any variable name in a document. You should not re-declare same variable twice.
JavaScript is untyped language. This means that a JavaScript variable can hold a
value of any data type. Unlike many other languages, you don't have to tell
JavaScript during variable declaration what type of value the variable will hold.
The value type of a variable can change during the execution of a program and
JavaScript takes care of it automatically.

JavaScript Variable Scope
The scope of a variable is the region of your program in which it is defined. JavaScript
variables have only two scopes.

Global Variables: A global variable has global scope which means it can be defined
anywhere in your JavaScript code.

Local Variables: A local variable will be visible only within a function where it is defined.
Function parameters are always local to that function.
Within the body of a function, a local variable takes precedence over a global variable
with the same name. If you declare a local variable or function parameter with the same
name as a global variable, you effectively hide the global variable. Take a look into the
following example.

<script type="text/javascript">

<l

var myVar = "global"; / Declare a global variable

function checkscope() {

var myVar = "local"; // Declare a local variable

document.write(myVar);

J

/1>
</script>
It will produce the following result:
Local
Functions in java script:

A function is a group of reusable code which can be called anywhere in your program.
This eliminates the need of writing the same code again and again. It helps programmers
in writing modular codes. Functions allow a programmer to divide a big program into a
number of small and manageable functions.

Like any other advanced programming language, JavaScript also supports all the features
necessary to write modular code using functions. You must have seen functions like

alert() and write() in the earlier chapters. We were using these functions again and again,
but they had been written in core JavaScript only once.
JavaScript allows us to write our own functions as well. This section explains how to
write your own functions in JavaScript
Function Definition
Before we use a function, we need to define it. The most common way to define a
function in JavaScript is by using the function keyword, followed by a unique function
name, a list of parameters (that might be empty), and a statement block surrounded by
curly braces.
Syntax
The basic syntax is shown here.

<script type="text/javascript">

<!-

function functionname(parameter-list)

{

statements
J
/1>
</script>
Example
Try the following example. It defines a function called sayHello that takes no parameters:
<script type="text/javascript">
<!--
function sayHello()

{
alert("Hello there");

J
/->
</script>
Calling function:
To invoke a function somewhere later in the script, you would simply need to
write the name of that function as shown in the following code.
<html>
<head>
<script type="text/javascript">
function sayHello()

{

document.write ("Hello there!");

}

</script>

</head>

<body>

<p>Click the following button to call the function</p>
<form>

<input type="button" onclick="sayHello()" value="Say Hello">
</form>
<p>Use different text in write method and then try...</p>
</body>
</html>
Function Parameter:
Till now, we have seen functions without parameters. But there is a facility to pass
different parameters while calling a function. These passed parameters can be captured
inside the function and any manipulation can be done over those parameters. A function
can take multiple parameters separated by comma.
Example
Try the following example. We have modified our sayHello function here. Now it takes
two parameters.
<htmli>
<head>
<Script type="text/javascript">
function sayHello(name, age)

{

document.write (name + "is " + age + " years old.");
/
</script>
</head>
<body>
<p>Click the following button to call the function</p>
<form>
<input type="button" onclick="sayHello('Zara', 7)" value="Say Hello">
</form>
<p>Use different parameters inside the function and then try...</p>
</body>
</html>

Nested Functions

Prior to JavaScript 1.2, function definition was allowed only in top level global code,
but JavaScript 1.2 allows function definitions to be nested within other functions as
well. Still there is a restriction that function definitions may not appear within loops or
conditionals. These restrictions on function definitions apply only to function
declarations with the function statement.

As we'll discuss later in the next chapter, function literals (another feature introduced
in JavaScript 1.2) may appear within any JavaScript expression, which means that they
can appear within if and other statements.

<html>
<head>
<script type="text/javascript">
<!-
function hypotenuse(a, b) {
function square(x) { return x*x; }
return Math.sqrt(square(a) + square(b));
J
function secondFunction(){
var result;
result = hypotenuse(1,2);

document.write (result);
J
/>
</script>
</head>
<body>
<p>Click the following button to call the function</p>
<form>
<input type="button" onclick="secondFunction()" value="Call Function">
</form>
<p>Use different parameters inside the function and then try...</p>
</body>

</html>

Function() constructor:

The function statement is not the only way to define a new function; you can define
your function dynamically using Function() constructor along with the new operator.
Note: Constructor is a terminology from Object Oriented Programming. You may not
feel comfortable for the first time, which is OK.

Syntax Following is the syntax to create a function using Function() constructor along
with the new operator.

<script type="text/javascript">
<!--
var variablename = new Function(Argl, Arg2..., "Function Body");
/1>
</script>
The Function() constructor expects any number of string arguments. The last argument
is the body of the function — it can contain arbitrary JavaScript statements, separated
from each other by semicolons.
Notice that the Function() constructor is not passed any argument that specifies a
name for the function it creates. The unnamed functions created with the Function()
constructor are called anonymous functions

Example:

<html>

<head>

<script type="text/javascript">

<!-

var func = new Function("x", "y", "return x*y;");

function secondFunction()({

var result;

result = func(10,20);

document.write (result);

J

/->

</script>

</head>

<body>

<p>Click the following button to call the function</p>

<form>

<input type="button" onclick="secondFunction()" value="Call Function">

</form>

<p>Use different parameters inside the function and then try...</p>

</body>

</html>
Literal Functions
JavaScript 1.2 introduces the concept of function literals which is another new way of
defining functions. A function literal is an expression that defines an unnamed function.
Syntax The syntax for a function literal is much like a function statement, except that it
is used as an expression rather than a statement and no function name is required.

<script type="text/javascript">

<l—

var variablename = function(Argument List){
Function Body

5

/>

</script>

What is an Event?

JavaScript's interaction with HTML is handled through events that occur when the user
or the browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button, that click too is
an event. Other examples include events like pressing any key, closing a window, resizing
a window, etc.

Developers can use these events to execute JavaScript coded responses, which cause
buttons to close windows, messages to be displayed to users, data to be validated, and
virtually any other type of response imaginable.
Events are a part of the Document Object Model (DOM) Level 3 and every HTML element
contains a set of events which can trigger JavaScript Code.
Please go through this small tutorial for a better understanding HTML Event Reference.
Here we will see a few examples to understand the relation between Event and
JavaScript.
onclick Event Type
This is the most frequently used event type which occurs when a user clicks the left
button of his mouse. You can put your validation, warning etc., against this event type.
Example
Try the following example.

<html>

<head>

<script type="text/javascript">

<!--

function sayHello() {

document.write ("Hello World")

}

/1>

</script>

</head>

<body>

<p> Click the following button and see result</p>

<input type="button" onclick="sayHello()" value="Say Hello" />

</body>

</html>

onsubmitEvent Type
onsubmit is an event that occurs when you try to submit a form. You can put your form
validation against this event type.
Example
The following example shows how to use onsubmit. Here we are calling a validate()
function before submitting a form data to the webserver. If validate() function returns
true, the form will be submitted, otherwise it will not submit the data.
Try the following example.

<html>

<head>

<script type="text/javascript">

<!--

function validation() {

all validation goes here

return either true or false

J
/->
</script>
</head>
<body>
<form method="POST" action="t.cgi" onsubmit="return validate()">
<input type="submit" value="Submit" />
</form>
</body>
</html>

onmouseover and onmouseout :These two event types will help you create nice effects
with images or even with text as well. The onmouseover event triggers when you bring
your mouse over any element and the onmouseout triggers when you move your mouse
out from that element. Try the following example.

<html>

<head>

<script type="text/javascript">

<!--

function over() {

document.write ("Mouse Over");

}

function out() {

document.write ("Mouse Out");

J

/1>

</script>

</head>

10

<body>

<p>Bring your mouse inside the division to see the result:</p>

<div onmouseover="over()" onmouseout="out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

Document object Model:A Document object represents the HTML document that is
displayed in that window. The Document object has various properties that refer to other
objects which allow access to and modification of document content.
The way a document content is accessed and modified is called the Document Object
Model, or DOM. The Objects are organized in a hierarchy. This hierarchical structure
applies to the organization of objects in a Web document.
Window object: Top of the hierarchy. It is the outmost element of the object hierarchy.

Document object: Each HTML document that gets loaded into a window becomes a
document object. The document contains the contents of the page.

Form object: Everything enclosed in the <form>...</form> tags sets the form object.

Form control elements: The form object contains all the elements defined for that object
such as text fields, buttons, radio buttons, and checkboxes.

Here is a simple hierarchy of a few important objects:

Window
frame [parent self [top
| |
[hisory | | document | | location |
I |
link		form [anchor			
radio		textarea i I button		text		checkbhox
passworid ‘	reset ‘	select				

There are several DOMs in existence. The following sections explain each of these DOMs
in detail and describe how you can use them to access and modify document content.

The Legacy DOM: This is the model which was introduced in early versions of
JavaScript language. It is well supported by all browsers, but allows access only to
certain key portions of documents, such as forms, form elements, and images.

11

The W3C DOM: This document object model allows access and modification of all
document content and is standardized by the World Wide Web Consortium (W3C). This
model is supported by almost all the modern browsers.

The IE4 DOM: This document object model was introduced in Version 4 of Microsoft's
Internet Explorer browser. IE 5 and later versions include support for most basic W3C
DOM features.

EXAMPLE OF DOM PROGRAM
<html>
<head>
<title> Document Title </title>
<script type="text/javascript">
<!

function myFunc()
{
var ret = document.title;
alert("Document Title : " + ret);
var ret = document.URL;
alert("Document URL : " + ret);
var ret = document.forms|[0];
alert("Document First Form : " + ret);
var ret = document.forms|[0].elements[1];
alert("Second element : " + ret);
}
/1>
</script>
</head>
<body>
<hl id="title">This is main title</h1>
<p>Click the following to see the result:</p>
<form name="FirstForm">
<input type="button" value="Click Me" onclick="myFunc();" />
<input type="button" value="Cancel">
</form>
<form name="SecondForm">
<input type="button" value="Don't ClickMe"/>
</form>
</body>

</html>

FORM VALIDATION:

Form validation normally used to occur at the server, after the client had entered all the
necessary data and then pressed the Submit button. If the data entered by a client was
incorrect or was simply missing, the server would have to send all the data back to the

12

client and request that the form be resubmitted with correct information. This was really
a lengthy process which used to put a lot of burden on the server.
JavaScript provides a way to validate form's data on the client's computer before sending
it to the web server. Form validation generally performs two functions.

Basic Validation - First of all, the form must be checked to make sure all the mandatory
fields are filled in. It would require just a loop through each field in the form and check
for data.

Data Format Validation - Secondly, the data that is entered must be checked for correct
form and value. Your code must include appropriate logic to test correctness of data.
<html>
<head>
<title>Form Validation</title>
<script type="text/javascript">
<l-
// Form validation code will come here.
/->
</script>
</head>
<body>
<form action="/cgi-bin/test.cgi" name="myForm"
onsubmit="return(validate());">
<table cellspacing="2" cellpadding="2" border="1">
<tr>
<td align="right">Name</td>
<td><input type="text" name="Name" /></td>
</tr>
<tr>
<td align="right">EMail</td>
<td><input type="text" name="EMail" /></td>
</tr>
<tr>
<td align="right">Zip Code</td>
<td><input type="text" name="Zip" /></td>
</tr>
<tr>
<td align="right">Country</td>
<td>
<select name="Country">
<option value="-1" selected>[choose yours]</option>
<option value="1">USA</option>
<option value="2">UK</option>
<option value="3">INDIA</option>
</select>

</td>
</tr>
<tr>
<td align="right"></td>
<td><input type="submit" value="Submit" /></td>
</tr>
</table>
</form>
</body>
</html>

13

