OCCTIVE Content Guide

Last Updated: November 8, 2025

The following document describes the structure of the data used in the Google

Sheet. This sheet provides the source data for the OCCTIVE website and also

gives insights into the code hosted on GitHub.

Table of Contents:

Where’s My Data?
When does stuff update?
Google Apps Script Automation
What is Apps Script?
Current .gs Files
UniqueOrders.gs — Unit Order Validation
AutoGroupVideos.gs — Video Organization and Order Validation
Deployment
Running the Site Locally
Running Locally Again
Automatic Testing
Updating Dependencies
Publishing to GitHub Pages
Updating Local CSV Backups
Automated Monthly Update (Preferred Method)
Manual Update (Fallback Method)

WO NOoO O WWDMNDNDDNND

[O G G §
A NN -2 O

https://docs.google.com/spreadsheets/d/1u7-7kIAtv2q_gIUCcSp6hZdR_Nv0HGgg_wWNZ68I9kY/edit?gid=2013487824#gid=2013487824
https://docs.google.com/spreadsheets/d/1u7-7kIAtv2q_gIUCcSp6hZdR_Nv0HGgg_wWNZ68I9kY/edit?gid=2013487824#gid=2013487824
https://melvyn9.github.io/OCCTIVE/#/
https://github.com/melvyn9/OCCTIVE/tree/main

Where's My Data?

Data on this site is generally stored in one of two locations.

Dynamically via the Content Spreadsheet, or Statically via the codebase. Both of these can

be edited easily, and most of it will update via the content spreadsheet. The different tabs are

documented in the rest of this document.

When does stuff update?

The site uses a method of caching data locally in the browser. To clear loaded data, the user
must close the current tab containing the OCCTIVE page, and re-open the site. One thing to
note is that Google Sheets can take a minute or so to refresh its data, so even after re-opening
the site, it may take a few more minutes for new data to appear on the site. If you want to see

changes straight away, open an incognito browser and visit the OCCTIVE page.

Static content updates with each server deployment. If you want to update this, make a change

to the github repository (with the content update), then redeploy the site.
Google Apps Script Automation

What is Apps Script?

Google Apps Script (GAS) is a built-in scripting environment for Google Sheets, Docs, and other
Workspace tools. It allows you to automate actions, validate inputs, and react to changes. In this
case, keeping your content spreadsheet clean, structured, and safe for use by the OCCTIVE

web app.

Our spreadsheet uses two .gs files (Google Script files) that automatically run whenever
someone edits specific cells in the “Units” or “Videos” tabs. They enforce validation rules,

prevent errors that could break the site, and organize data automatically.

https://docs.google.com/spreadsheets/d/1u7-7kIAtv2q_gIUCcSp6hZdR_Nv0HGgg_wWNZ68I9kY/edit?gid=2013487824#gid=2013487824

To open or edit these scripts:

In the spreadsheet, click Extensions — Apps Script.

OCCTIVE B « & &

File Edit View Insert Format Data Tools Extensions Help Ask Gemini Accessibility

Q Menus © @ & § 100% v $ % E+ Addons > B
(® Macros >
C4 ~ | fi TheProgramming Process
A 5 3 =¥ Apps Script
1 unit_id = video_order = video_title
What'sthe In ¢ AppSheet >
setting-context 1 of Computing . 'he
i & Looker Studio >
Benefits of

- Understandina

The Apps Script editor will open in a new tab.

You'll see our scripts listed on the left under filenames such as Unique Orders.gs and Group
Videos by Unit.gs. Each file is automatically linked to this spreadsheet only. Changes apply

immediately once saved. You must click the save button after every change for the changes to

apply.
aW Apps Script Multiselect data validation @ Unsaved changes

> Run) Debug onEdit - Execution log

Files AZ)
® Z +

<S> Unique Orders.gs

O Group Videos by Unit.gs * AWto-group Videos by unit_id (resilient, repeatable, with us

@ K o o e
i) * This script enforces structure and data integrity within the
’@‘ Libraries + * Tt performs two key functions:

6 * 1. Keeps all videos with the Isame ‘unit_id® grouped toget
= Services + * 2. Ensures that each 'video_order® value is unique within
=, .

@ * HOW IT WORKS:
K e e e e e

Current .gs Files

UnigueOrders.gs — Unit Order Validation

This script maintains the integrity of the “Units” tab by enforcing two key rules:

1. Unique Order Values: No two rows can share the same order number (column F).

2. Positive Numbers Only: The order value must be a positive whole number (1, 2, 3, ...).

If a user enters a duplicate or invalid value, the script automatically:
- Reverts the cell to its previous value.

- Displays a popup explaining what went wrong.

Danger:
This script explicitly references column F (orderColumn = 6). If you move, insert, or delete
columns, you must update this column number in the script. Otherwise, the validation will stop

working or target the wrong column.

AutoGroupVideos.gs — Video Organization and Order Validation

This script manages the “Videos” tab and performs two main functions:
1. Auto-grouping by Unit ID:
When a user edits the unit_id column (column A), the script finds all rows with the same
ID and automatically moves the new or edited row just below that group.
It keeps all videos for a topic together, maintaining a clean, logical structure.

A popup message appears to confirm when a move occurs.

2. Unique Video Order Validation:
When a user edits the video_order column (column B), the script checks that the new
order number is unique within that unit_id group. It checks whenever any other column of
that row is edited. If a duplicate order is found, the change is reverted and a warning

message is displayed.

Danger:
Like UniqueOrders.gs, this script uses hardcoded column references:
- unitldCol = 1 — column A
- orderCol =2 — column B
If you rearrange the spreadsheet columns, rename the sheet, or add new columns to the

left, you must update these values in the script. Failing to do so will cause the

automation to stop functioning correctly or to rearrange the wrong data.

Deployment

Deployment happens by copying a built version of the project to the server.

0. Install npm (https://nodejs.org/en/)

a. Select the LTS version, and then choose the relevant installer for your
operating system.

1. Install yarn (https://classic.yarnpkg.com/en/docs/install#mac-stable)

a. npm install --global yarn
b. or sudo npm install --global vyarn if there are permission issues
2. Clone the repository locally (https://github.com/melvyn9/OCCTIVE/tree/main)
a. git pull if you are out of date
3. Install dependencies via yarn
a. Runyarn install in the directory of the repo
4. Build the project
a. yarn build
5. Deploy the project (requires the server password)

a. npx server -s build

https://nodejs.org/en/
https://classic.yarnpkg.com/en/docs/install#mac-stable
https://github.com/melvyn9/OCCTIVE/tree/main

Running the Site Locally

You can run it locally via yarn.

1. Clone the repository locally (https://qgithub.com/melvyn9/OCCTIVE/tree/main)
a. git pull if you are out of date

2. Install dependencies via yarn
a. Runyarn install inthe directory of the repo

3. Run alocal copy of the site

a. npx serve -s build

https://github.com/melvyn9/OCCTIVE/tree/main

Running Locally Again

If you have successfully run the site locally on your computer in the past and have come back to
run it again. You will need to install the dependencies again.

1. Open the GitHub repository on your favorite IDE and make sureto git pull.

2. In the terminal of the IDE, type

a. npm install —-global yarn
b. yarn build

C. npx serve -s build

Automatic Testing

Whenever code is pushed into a branch or whenever there is a pull request, there is a build
process that will be run to ensure the code is of high quality and follows a good coding standard.
The build process is run using Github Actions, more about it can be read here. The build

process can be found in the repository in the .github/workflows folder.

There is currently one build process called Build and Lint, located in lint.yml. This file contains
a linter that is used to ensure good coding practices as well as reduce the need for redundant
code such as catching unused variables, indentation, and many others. More coding standards
can be added by editing the lint.yml file. To get a better understanding of what a linter is and

how it is used, this is a good resource to look through.

You can check locally if you pass test cases with yarn run 1lint and you can automatically

fix most errors with yarn run lint:fix.

An example of a successful build + lint run.

€ Build and Lint

@ Changed background color of nodes to darker gray #43

(7) Summary

Jobs
build (20.x
© — Set up job

@ lint (20.%)

Run actions/checkout@v2
Run details
6] Usage

Run yarn
&9 Workflow file

Run yarn run build
Post Use No
Post Run actions/checkout@v?2

Complete job

An example of an unsuccessful build + lint run.

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://www.freecodecamp.org/news/github-super-linter/

€ Build and Lint

) Merge pull request #12 from melvyn9/home-page-stylng-fix #41

@ Summary

Annotations
Job e
@ build (20x)

lint (20.x)

Run de
© Usage

&3 Workflow file

| --froze
Run yarn run lint

» Run yarn run lint
yarn run v1.22.22
$ eslint "src/**/*.{ts,tsx}" & npx stylelint "src/**/*.scss"
Browserslist: caniuse-lite is outdated. Please run:
npx update-browserslist-db@latest
Why you should do it regularly:

src/layout/components/FrameCard/style.scss
339:3 X Expected gap to come before width order/properties-alphabetical-order

352:5 Expected max-height to come before width order/properties-alphabetical-order

3
353:5 X Expected margin-left to come before max-height order/properties-alphabetical-order
355:5 X

Expected margin-bottom to come before margin-top order/properties-alphabetical-order

error Command failed with exit code 2.

info Visit https J c docs/cli/run for documentation about this command.

Updating Dependencies

It is important to update dependencies frequently as newer versions of node may be
incompatible with the older versions of the dependencies. Therefore, you may encounter bugs
or error messages when trying to run the site locally on a newer version of node. If this is the
case, always be sure to check your version of node using node -v and then switching to an
older version of node by using node packet manager. It is recommended to update the

dependencies once a month.

We can view the outdated dependencies by typing yarn outdated or npm outdated in the
terminal. You can see the versions of the dependencies that require updating along with their
version numbers. This gives you an idea as to which dependencies require updating and if you
choose to do so can manually update each dependency one at a time. However, this approach
can be time consuming as we have many dependencies that require updating. Therefore, the
easiest way to update the dependencies is by using npm update. This command will update

all the dependencies to the “wanted” version.

If it is the case that you get an error, it may be because some dependencies do not get updated
to a major version. If this is the case, try using npm audit fix --force butbe sure to do
this on a branch and not on main as this can cause the build to break. Please be very careful
when using this command, read up more about the command here and here to understand what

it does before using it.

https://docs.npmjs.com/cli/v9/commands/npm-audit
https://stackoverflow.com/questions/69692842/error-message-error0308010cdigital-envelope-routinesunsupported

Publishing to GitHub Pages

The package.json file includes scripts to build and deploy the website to GitHub Pages, a static
hosting service provided by GitHub. This allows your project to be accessible via a live public
link like https://melvyn9.github.i TIVE.

To make changes live on GitHub Pages:

1. In package.json, add the following line below "private": true:
"homepage": "https://melvyn9.github.io/OCCTIVE",

2. Then run the following commands in your terminal:
npm run build

npm run deploy
Script Breakdown

e ‘"predeploy": "npm run build"
Automatically runs the build script before deploying.
e ‘"deploy": "gh-pages -d build"
Publishes the contents of the build/ folder to the gh-pages branch using the gh-pages

tool.
Troubleshooting GitHub Pages
If your site shows a 404 error not found at https://melvyn9.github.io/OCCTIVE/#/:

Go to your GitHub repository settings.
Under the “Pages” section, find the “Build and deployment” settings.
Change the source branch from gh-pages to another branch like main, and click Save.

Then change it back to gh-pages, click Save again.

ok~ w0 Dbd =

Wait 3—5 minutes, then refresh your GitHub Pages link.

This will reset the GitHub Pages configuration and trigger a fresh deployment.

https://melvyn9.github.io/OCCTIVE

Updating Local CSV Backups

The OCCTIVE site relies on Google Sheets as the primary data source.
To guard against downtime or access issues, we maintain local backup CSV files inside the
repository (/public/data). These backups are used automatically if the Google Sheets data

cannot be loaded.

Follow these steps to update the backups:

Automated Monthly Update (Preferred Method)

This process is now fully automated through a GitHub Action workflow.

The workflow automatically downloads the latest data from the Google Spreadsheet on the first
day of every month and commits any updated CSV files to the repository.

It only creates a commit if there are actual content changes between the new and existing
CSVs.

Workflow details:

e File location: .github/workflows/update-spreadsheet.yml

e Workflow name: Monthly Spreadsheet Sync
e Runs automatically: At 12:00 AM Pacific Time on the 1st of every month

e Data source: Public CSV export links for each sheet (Videos, Units, Dependency
Graph)

e Output files:
o public/data/videos.csv
o public/data/units.csv
o public/data/dependency_graph.csv

To manually trigger the workflow:

1. Go to the GitHub repository page.

2. Click on the “Actions” tab at the top.

3. Select “Monthly Spreadsheet Sync” from the left sidebar.

4. Click “Run workflow” (top-right corner).

= o melvyn9 / OCCTIVE

Code) Issues 17 Pull requests) Actions [Projects) Security Insights. 81 Settings

Actions New workflow Monthly Spreadsheet Sync

All workflows

Build and Lint 3 workflow runs
Monthly Spreadsheet Sync

pages-build-deployment This workflow has a workflow_dispatch event trigger.
[U——

Monthly Spreadsheet Sync
€ Caches onth e

%7 Deployments

2 Attestations Monthly Spreadsheet Sync
5 5 ¥

E5 Runners

% Usage metrics

Monthly Spreadsheet Sync
9 Performance metrics d A eet <

5. Choose the main branch, then click Run workflow.

6. The workflow will:

o Download the latest CSVs from Google Sheets.

o Commit and push the updated files to /public/data (if there are changes).

o Log the details under the “Actions” tab for confirmation.

How it works internally:

e The .yml file uses a curl command to fetch each sheet as a CSV.

e GitHub Actions runs with contents: write permission, allowing it to push updates
automatically.

[J

It runs as github-actions[bot], and you'll see commits like:

Updated CSVs: public/data/videos.csv public/data/units.csv
public/data/dependency graph.csv

Important Note: Spreadsheet Visibility Requirement

This automated workflow only functions if the Google Spreadsheet is publicly accessible via its
CSV export link. If the spreadsheet is set to private (restricted access), the curl command will

fail because GitHub Actions cannot authenticate without credentials.

To make this workflow compatible with private sheets, you would need to use a Google Service
Account with a private API key (stored as a GitHub Secret) and update the workflow to
authenticate requests through the Google Sheets API instead of direct public CSV export links.

Manual Update (Fallback Method)

1. Open the Google Spreadsheet

e Navigate to the main OCCTIVE data spreadsheet (link provided by the team).
e Each tab corresponds to a dataset:

o Videos

o Units

o DependencyGraph
2. Download CSV Files
For each tab:

1. Go to File - Download — Comma-separated values (.csv)

E OCCTIVE B ¥ & &

File Edit View Insert Format Data Tools Extensions Help Accessibility

2. Save the file locally.

a New > % .0_ .00 123 Arial ~ —[10
o Open ctrl+0
A2
-] Import c
1z |[D Make acopy = name
2+ Share -
2
= Email -
£ & Download -

D Labels

2 Rename

@ Add shortcut to Drive

€9 Version history
@ Make available offline

@ Details
@ Security limitations

83 Settings

& Print

Rename each file exactly as follows:

e Videos tab — videos.csv

e Unitstab — units.csv

Microsoft Excel (.xlsx)
OpenDocument (.ods)

PDF (.pdf)

Web Page (-html)

Comma Separated Values (.csv)
Tab Separated Values (.tsv)

at Naming and Assignment

Functions

ames Sequences and Data Frames

Ctri+P

e DependencyGraph tab — dependency_graph.csv

3. Replace Local Backup Files

1. In the repo, open the /public/data folder.
2. Drag and drop (or copy/paste) the new files in, overwriting the old ones.

o /public/data/videos.csv
o /public/data/units.csv

o /public/data/dependency_graph.csv

	
	Where’s My Data?
	When does stuff update?
	Google Apps Script Automation
	What is Apps Script?
	To open or edit these scripts:

	Current .gs Files
	UniqueOrders.gs – Unit Order Validation
	AutoGroupVideos.gs – Video Organization and Order Validation

	Deployment
	Running the Site Locally
	
	Running Locally Again
	
	Automatic Testing
	Updating Dependencies
	
	Publishing to GitHub Pages
	Updating Local CSV Backups
	Automated Monthly Update (Preferred Method)
	Important Note: Spreadsheet Visibility Requirement
	Manual Update (Fallback Method)

