
Wee8: Wasm C/C++ API in V8

With version 7.8, V8 introduces official built-in support for the Wasm C/C++ API proposal. 1

Warning: Since this API is designed in a separate project, V8 can’t make any promises
about its stability. It is possible that you will have to update your embedding code if the API
changes. V8 will aim to always support the latest version of the API.
2023 update: V8-side work on this is currently unstaffed. We'll fix bugs, but aren't currently
planning to work on improvements. Contrary to the "aim" stated above, the version of the
API that V8 implements has fallen slightly behind upstream. Sorry!
Comment access has been locked down due to vandalism. If you have any comments or
questions, please send an email to jkummerow@chromium.org.

V8 provides a separate build target producing a library called libwee8. This library supports
only WebAssembly, no JavaScript . Here’s how to use it: 2

Step 0: Get a V8 checkout (TL;DR: put depot_tools in $PATH and fetch v8 && cd v8).

Step 1: Create a build output directory, e.g. out/wee8, by running:

gn args out/wee8
Enter the build args you want, then save and quit the editor.
Recommended GN args are:

is_component_build = false # shared library not yet supported
use_custom_libcxx = false # use libstdc++, not libc++
v8_enable_fast_mksnapshot = true # save some build time
v8_enable_i18n_support = false # save some binary size
v8_use_external_startup_data = false # monolithic bundle

For Debug builds, you will also want:

is_debug = true
symbol_level = 2
v8_optimized_debug = false

Whereas for Release builds, these make sense:

is_debug = false
symbol_level = 1 # or even 0
v8_enable_handle_zapping = false

There currently seems to be an issue where sometimes symbols aren’t visible. If you
encounter that, you can work around it by adding:

v8_expose_symbols = true

2 Technically right now it still does support JavaScript, but we will break that in the future in order to
reduce binary size, so please don’t start building applications that rely on it!

1 Tip-of-tree builds have had experimental support since May 2019.

https://github.com/WebAssembly/wasm-c-api/
https://chromium.googlesource.com/v8/v8/+/main/third_party/wasm-api/
https://v8.dev/docs/source-code

But note that this is a temporary workaround; if you know how to repro this situation please
let us know so we can develop a proper fix.

Step 2: Build libwee8.
​ autoninja -C out/wee8 wee8

Step 3: Write your embedding application (below: my.cc) and link it against libwee8. Example
for a debug build with Clang and C++ (where $HEADERS is the directory that contains
wasm.h and wasm.hh):
​ clang++ -std=c++11 -c my.cc -o my.o -O0 -ggdb -I $HEADERS
​ clang++ my.o -o my /path/to/v8/out/wee8/obj/libwee8.a -ldl
-pthread
Release builds, GCC builds, and C builds work similarly. See V8’s
tools/run-wasm-api-tests.py for a variety of possible combinations.

Feedback, good or bad? Send email to jkummerow@chromium.org. I’d love to hear about
your use cases, as well as any issues you encounter.

—

Appendix: Comments and discussions
Location of this documentation.
It has been suggested that this document could live on v8.dev/docs, to make it more
discoverable and/or more official-looking.

Name of the library.
It has been suggested to name the built library "libwasm.a" (to match the wasm.h header)
instead of libwee8.a. That would make it easier for projects to use it interchangeably with
other implementations of the same API. OTOH a project-specific name might be less
confusing. Further opinions on this would be appreciated.

Shared-library (.so / .dll) build.
On the to-do list.

About the use_custom_libcxx = false build arg.
Some people reported not needing it. It's required for linking libwee8.a with projects that use
the regular glibc though. YMMV.

https://chromium.googlesource.com/v8/v8/+/master/tools/run-wasm-api-tests.py
mailto:jkummerow@chromium.org

	Wee8: Wasm C/C++ API in V8
	Appendix: Comments and discussions

