
Dangling cross-references

Core semantic question
Do we allow cross-references that point out from the scope?

Formally: Does MyClass.myCrossReference(x, y); imply in_scope(y)?
Here in_scope(y) denotes y being in the scope (e.g. member of the ResourceSet, or
subtree). It should be equivalent to EObject(y), but distinguished here for clarity.

There are two possible ways to answer this question, leading to different semantics and
implementation tasks.

Remark: MyClass.myCrossReference(x, y);and MyClass(x); both already imply
in_scope(x), and it should stay that way. The only question is about in_scope(y).

Option 0 (unspecified) - don’t care
This is the current solution. It is the cheapest, but users seem (rightly) confused that the
semantics permit unspecified behaviour in the corner case of dangling edges.

Normalization. Also note that in a query composed of MyClass.myCrossReference(x,
y);and MyTargetClass(y); the second constraint can be eliminated (if it is the exact value
type of the reference).

Option 1 (no) - dangling references permitted
In this case, the base index must publish a single base relation:

●​ EReferencePossiblyDangling<MyClass.myCrossReference>(x, y).

And this is what Pattern constraints translate to. Thus there is no change required in either the
base index or (hopefully) in the matchers.

Normalization. Take a query composed of MyClass.myCrossReference(x, y);and
MyTargetClass(y); the second constraint can NOT be eliminated, so PConstraint inference
logic needs to be updated accordingly. Therefore power users might want to improve
performance by omitting type constraints on y - we might want to avoid this side effect. How to
avoid it?

●​ Turn query parameter type constraints into check-only ‘instanceof’ checks (or introduce
new syntax for this?) - those can still be eliminated, and still offer type inference support
e.g. for the generator.

Option 2 (yes) - dangling references rejected
In that case, some module must filter reference targets according to their residence in the
scope, and (if necessary) incrementally update this filtered result. That responsibility can be put
on either side of the IQRC interface.

Option 2a - dangling references rejected by query backend
The base index publishes two separate IInputKeys.

●​ One for an unfiltered EReference base relation
EReferencePossiblyDangling<MyClass.myCrossReference>(x, y).

●​ The second one is the scope membership: in_scope(y). This actually already exists
as EClassTransitiveInstancesKey<EObject>(y), just labeled differently here for
clarity.

According to IQMC, there is no impliciation relationship between these two tables at y, though
EReferencePossiblyDangling<MyClass.myCrossReference>(x, y) of course still
implies EClassTransitiveInstancesKey<MyClass>(x) and therefore in_scope(x).

As there is no implication guaranteed by the base index, it is the responsibility of the query
backend to compute a join for these two base relations in order to obtain the match set of the
query constraint MyClass.myCrossReference(x, y), which would therefore now translate
into two PConstraints.

Normalization. Note that performance-wise this join can be possibly avoided if in_scope(y)is
subsumed by any other pattern constraint (i.e. anything else dclensures that it is in scope).

Also note that in a query composed of MyClass.myCrossReference(x, y);and
MyTargetClass(y); the second constraint can be eliminated (if it is the exact value type of
the reference) only if

A.​ we ensure in_scope(y) in one way or the other (e.g. may be subsumed by a
reference constraint that has y as source), and also

B.​ we upgrade the PConstraint-level inference mechanism to handle such complicated
cases.

Also note that if we add this advanced type inference capability, then the second PConstraint
associated with the language-level pattern constraint shall be

EClassTransitiveInstancesKey<MyTargetClass>(y), so that this will not be a reason
to unnecessarily index all EObjects.

Option 2b - dangling references rejected by base index
In this case, the base index must publish a single base relation:

●​ EReferenceNonDangling<MyClass.myCrossReference>(x, y).

According to IQMC, there is an impliciation relationship:
EReferenceNonDangling<MyClass.myCrossReference>(x, y)implies
EClassTransitiveInstancesKey<MyTargetClass>(y) and therefore in_scope(y)
(and of course the same for x, as always).

This way, the Pattern->PSystem mapping remains simple, and the query backends as well. The
downside is that the base index must maintain and index the results of a join (in essence,
contain a Rete join node).

Normalization. As for query normalization,in a query composed of
MyClass.myCrossReference(x, y);and MyTargetClass(y); the second constraint
can be eliminated (if it is the exact value type of the reference) just like in the current solution.

Summary

Option 0 1 2a 2b

Rejected on
language-level

unspecified no yes yes

Responsible
for
computation of
rejection

Type inference,
sometimes,
accidentally

- Query backend Base Index
(Engine Context)

Base Index has
to maintain
in_scope(x)

Not necessary Not necessary Yes Yes, unless
subsumed in all
cases

MyTargetClas
s(y)
subsumed

Yes :) No :(Yes… but
in_scope(y)
must still be
checked by
query backed,
though

Yes… but no
performance
gain:
in_scope(y)
must still be
checked

sometimes it can
be subsumed as
well;​
Also,
subsumption
requires smarter
PSystem-level
inference than
what we have
now

internally by the
backend, and
cannot be
subsumed

Components to
modify

Users :) Small change to
EMF
metacontext

EMF meta
context, PBody
inferrer,
PSystem type
inference logic
(impact on query
backends)

Base index only​
(though
complex, e.g.
includes join!)​

Estimated
development
cost

0 Epsilon Couple of days Couple of days

Estimated
performance
impact

0 Extra join often Extra join,
hopefully often
eliminated (with
advanced type
inference)

Extra join always

Estimated user
experience

Confusion, it
seems

Power users
might want to
improve
performance by
omitting type
constraints on y
- we might want
to avoid this, but
my solution
leads to
confusion once
again.

These 2 options are
indistinguishable to the average
user

	Dangling cross-references
	Core semantic question
	Option 0 (unspecified) - don’t care
	Option 1 (no) - dangling references permitted
	
	Option 2 (yes) - dangling references rejected
	Option 2a - dangling references rejected by query backend
	Option 2b - dangling references rejected by base index

	Summary

