COMPARE PROPORTIONS

- packages: magrittr, pacman, survival, tidyverse
- dataset: survival::lung
- chi-square test
 - chi-sq test for sex & status
- proportions test
 - get survival proportions by sex
 - proportions test propr.test()
 - alternate hypothesis
- many proportions
 - method for comparing many proportions)

OVERVIEW

- basic analysis = looking at proportions
 - specifically: what percentage of people say 'yes' in this group
- depending on your data (frequencies, 2x2 table, several proportions all at once)
 - bw the chi-square test & prop.test function you can get what you need out of it

INSTALL AND LOAD PACKAGES

```
pacman::p_load (magrittr, pacman, survival, tidyverse)
```

survival - sample dataset

LOAD AND PREPARE DATA

```
?lung # info on "NCCTG" Lung Cancer Data" from survival
```

- about people with lung cancer / how long they survived / their sex / severity of cancer
- > look at status: 1 = censored (alive), 2 = dead / sex: male = 1, female = 2

Select 2 variables & Save data as df (data frame):

```
df %>% lung %>%
   select(status, sex) %>%
   as_tibble() %>%
   print()
```

result: tibble 228 x 2

status <dbl> / sex <dbl>

```
# A tibble: 228 x 2
  status sex
   <dbl> <dbl>
      2
           1
2
      2
            1
      2
            1
5
      2
           1
      2
           2
8
       2
            2
9
       2
10
      2
# i 218 more rows
# i Use `print(n = ...)` to see more rows
```

Recode 'sex' and 'status' from numeric to names:

```
df %>%
   mutate(
     status = ifelse(status == 1, "alive", "dead"),
     sex = ifelse(sex == 1, "male", "female")
   ) %>%
```

- result: status <chr> / sex <chr>

Create frequency table, save for reuse:

```
ptable <- df %>%  # save table for reuse
  select(sex, status) %>%  # variables in table
  table() %>%  # create 2 x 2 table
  print()  # show table
```

- result: environment values: ptable 'table' int[1:2, 1"2] 37 26 ...
 - these are frequencies

```
status
sex alive dead
female 37 53
male 26 112
```

CHI-SQUARED TEST

inferential test

Get chi-squared test for sex and status:

```
ptable %>% chisq.test()
```

result:

```
Pearson's Chi-squared test with Yates' continuity correction data:

X-squared = 12.42 | df = 1 (bc 2 x 2 table)
p-value = 0.0004247 (definitely below standard cutoff of .05)

> ptable %>% chisq.test()

Pearson's Chi-squared test with Yates' continuity correction data:

X-squared = 12.42, df = 1, p-value = 0.0004247
```

 > this is a statistically significant difference - Lets us know that survival and sex , in this particular dataset, operate together - there is a connection between the two. (they are NOT independent)

PROPORTIONS TEST

Get survival proportions by sex:

```
df %>%
   group_by(sex, status) %>% # variables to group by
   summarize(n = n()) %>% # calculate n for each group
   mutate(freq = n / sum(n)) # proportions by sex
```

- results: tibble 4 x 4

```
groups: sex [2]
sex <chr> / status <chr> / n <int> / freq <dbl>
female alive 37
                            0.411
female dead 53
                            0.589
male alive 26 0.188
       dead 112
male
                            0.812
 `summarise()` has grouped output by 'sex'. You can override using the `.groups`
 # A tibble: 4 \times 4
 # Groups:
         sex [2]
  sex status
                n freq
       <chr> <int> <dbl>
   <chr>
  female alive
  female dead
               53 0.589
 3 male alive
4 male dead
               26 0.188
```

- Of the female observations, 41% are still alive, and 58.9% had died; where as for the male observations, 18.8% and 81.2% had died. Looks like dramatic differences in proportions between males and females.

Proportions test: propr.test()

prop.test() - quick insight into the differences, and proportions/ percentages bw 2 groups
 prop.test() give us that info

```
ptable %>% prop.test()
```

- takes table that consists of the frequencies use the prop.test function
- <u>results</u>:

Alternative Hypothesis:

- Is survival greater for female patients than for male patients? (with 80% CI)

```
ptable %>%
    prop.test(
        alt = "greater",  # specify directional hypothesis
        conf.level = .80 # specify 80% confidence interval
)
```

- Results:

MANY PROPORTIONS

Method for comparing many proportions:

```
tibble (  # create new tibble

n = c(rep(100,5)),  # 100 trials 5 times

\#n = c(100, 100, 100, 100, 100) # or this way

x - seq(65, 45, by = -5) # number of successes

\#x = c(65, 60, 55, 50, 45) # or this way

) %$%  # exposition pipe

prop.test(x, n) # proportion test
```

- create data: make tibble:
 - make number of trials (n): (the denominator in the proportion) > make 5 groups, each with denominator of 100) n = c(rep(100,5))
 - (x) number of successes: proportion that actually looking at
 - exposition pipe to turn tibble into vector (prop.test needs vector)
 - prop.test(successes, number of trials)
- results: 5 dift proportions that correspond

```
5-sample test for equality of proportions without continuity correction
data: x out of n
X-squared = 10.101, df = 4, p-value = 0.03876 (less than standard cutoff of 0.5 - tf
is statistically significance difference in this table of proportions)
alternative hypothesis: two.sided
sample estimates:
prop1 prop2 prop3 prop4 prop5
0.65
       0.60
               0.55
                       0.50
                               0.45
         5-sample test for equality of proportions without continuity correction
 data: x out of n
X-squared = 10.101, df = 4, p-value = 0.03876
 alternative hypothesis: two.sided
 sample estimates:
 prop 1 prop 2 prop 3 prop 4 prop 5
  0.65 0.60 0.55 0.50 0.45
```