
#12 Using the 1-digit, 7 segment tube module

The “tube” refers to the segment of light on the display module. This component has 7
tubes and one dot.

Different pins on the microcontroller are activated to end electricity to the tubes which
lights them to create each individual number or letter. To make the number 8, for
instance, all seven segments are lit. There are 10 pins total pins on the bottom of
the component that fit nicely into a breadboard. 8 OUTPUT pins for each of the 7
segments, and the dot that indicates a decimal, and two Com, or common, pins that
are to connect to ground (GND).

HELPFUL TO KNOW: Often, if there is a sequence of code within a program that
will be repeated many times, coders will create functions. Functions are small sequences of
code set aside within the program. This way, a single line of code can “call out” that sequence of code. The sequence
will run, and then the main code will resume.

In the code example we will be using, the ‘main’ code sequence is significantly shorter because single lines
of code ‘call out’ to sequences of many lines of code that activate each of the numbers, then return back to
the main code. Think about how you might use functions in other coding situations…

To wire this component you will need:

●​ 2 black male-to-male jumpers to connect the GND (ground pins)
●​ 8 male-to-male jumpers of different colors for the 8 output pins
●​ 8 220ohm resistors, one for each output pin
●​ Breadboard
●​ Micro:bit breakout/breadboard shield
●​ breadboard

Place the module on your breadboard so that 5 pins are in pinholes on one side of the
breadboard and the other 5 pins are in pinholes on the other side - they should
straddle the center/middle of the breadboard

See the next page for wiring instructions.

Wire as such:
Segment g pin to pin 16 (not 11)

NOTE: change pin11 to pin16 on the code and
the wiring (p11 controls button B on the v2
micro:bit! The wiring from the Keystudios
directions was for the older version 1 micro:bit)

Segment f pin to resistor to pin 12
Segment a pin to resistor to pin 13
Segment b pin to resistor to pin 14
Segment e pin to resistor to pin 10
Segment d pin to resistor to pin 9
Segment c pin to resistor to pin 8
Segment dp (decimal point) pin to resistor to pin 7
Both top and bottom GND to ground rail

Be sure that each resistor is placed so that it is in the
same row on the breadboard as the pin, and the
jumper wires are placed in the same row of the
OTHER end of the resistor.

MakeCode

MakeCode code example can be found on page 257 of the Keyestudios tutorial.
DON’T FORGET to change p11 to p16 on the code (p11 controls button B on the
version 2 micro:bit! The wiring and code was for the older version 1.5 micro:bit)

***Find the details about this component and the instructions on page 257 in the
keystudios inventors kit tutorials.

This is the MicroPython code to confirm that you have wired the module successfully:

from microbit import *

display.off()

Here are all the function code sequences

def off():

 pin13.write_digital(0)

 pin14.write_digital(0)

 pin8.write_digital(0)

 pin9.write_digital(0)

 pin10.write_digital(0)

 pin12.write_digital(0)

 pin16.write_digital(0)

 pin7.write_digital(0)

def test_all():

 pin13.write_digital(1)

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(1)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(1)

def seven():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(0)

 pin10.write_digital(0)

def = define. Any sequence of code indented
under this is part of a “function”. A function is a
sequence of code that is referred to in another part
of the code.

There are 8 lines of code under this
function/sequence. Each line turns one of the
segments on or off. This code indented under “off():”
turns each of the ‘tubes’ off. (each has a value of 0)

This code indented under “test_all()” turns all
tubes, and the decimal on. (each has a value of 1)

This code indented under “seven()” turns on only
the tubes needed to make the number 7 (the tubes
not needed have a value of 0)

https://drive.google.com/file/d/1-qdt1Khw88ahZYXBPZzZuxOFug7d_Dum/view?usp=sharing

 pin12.write_digital(0)

 pin16.write_digital(0)

 pin7.write_digital(0)

def two():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(0)

 pin9.write_digital(1)

 pin10.write_digital(1)

 pin12.write_digital(0)

 pin16.write_digital(1)

 pin7.write_digital(0)

def six():

 pin13.write_digital(1)

 pin14.write_digital(0)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(1)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(0)

def nine():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(0)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(0)

def five():

 pin13.write_digital(1)

 pin14.write_digital(0)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(0)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(0)

def three():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(0)

 pin12.write_digital(0)

This code indented under “two()” turns on only the
tubes needed to make the number 2 (the tubes not
needed have a value of 0)

This code indented under “six()” turns on only the
tubes needed to make the number 6 (the tubes not
needed have a value of 0)

This code indented under “nine()” turns on only
the tubes needed to make the number 9 (the tubes
not needed have a value of 0)

This code indented under “five()” turns on only the
tubes needed to make the number 5 (the tubes not
needed have a value of 0)

This code indented under “three()” turns on only
the tubes needed to make the number 3 (the tubes
not needed have a value of 0)

 pin16.write_digital(1)

 pin7.write_digital(0)

def eight():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(1)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(0)

def zero():

 pin13.write_digital(1)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(1)

 pin10.write_digital(1)

 pin12.write_digital(1)

 pin16.write_digital(0)

 pin7.write_digital(0)

def four():

 pin13.write_digital(0)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(0)

 pin10.write_digital(0)

 pin12.write_digital(1)

 pin16.write_digital(1)

 pin7.write_digital(0)

def one():

 pin13.write_digital(0)

 pin14.write_digital(1)

 pin8.write_digital(1)

 pin9.write_digital(0)

 pin10.write_digital(0)

 pin12.write_digital(0)

 pin16.write_digital(0)

 pin7.write_digital(0)

def decimal():

 pin13.write_digital(0)

 pin14.write_digital(0)

 pin8.write_digital(0)

 pin9.write_digital(0)

 pin10.write_digital(0)

 pin12.write_digital(0)

 pin16.write_digital(0)

This code indented under “eight()” turns on only
the tubes needed to make the number 8 (the tubes
not needed have a value of 0)

This code indented under “zer0()” turns on only
the tubes needed to make the number 0 (the tubes
not needed have a value of 0)

This code indented under “four()” turns on only the
tubes needed to make the number 4 (the tubes not
needed have a value of 0)

This code indented under “one()” turns on only the
tubes needed to make the number 1 (the tubes not
needed have a value of 0)

This code indented under “decimal()” turns on
only the tubes needed to make the decimal (the
tubes all have a value of 0 except the dot)

 pin7.write_digital(1)

while True:

 if button_a.was_pressed():

 for i in range(4):

 decimal()

 sleep(500)

 off()

 sleep(100)

 zero()

 sleep(500)

 one()

 sleep(500)

 off()

 two()

 sleep(500)

 off()

 three()

 sleep(500)

 off()

 four()

 sleep(500)

 off()

 five()

 sleep(500)

 off()

 six()

 sleep(500)

 off()

 seven()

 sleep(500)

 off()

 eight()

 sleep(500)

 nine()

 sleep(500)

 off()

 decimal()

 sleep(500)

 off()

 test_all()

 sleep(500)

 off()

 sleep(3000)

The “while True” begins the conditional “forever”
loop - everything indented under it will be repeated
“forever” (or until the electricity is eliminated). In this
instance, the condition is: “when the A button is
pressed”

The “for i in range()” code begins a repeat loop,
set at 4 times.

The “sleep()” code delays the code from going to
the next line of code. It is in milliseconds, 500 = ½
second.

The off() code refers to a function found
elsewhere in the code - it runs the code sequence
defined as “off”, then returns to the next line in this
code.

The remainder of the code displays the numbers
0,1,2,3,4,5,6,7,8,and 9 in sequence with ½ second
between each, then tests all tubes, and waits
(sleeps) 3 seconds before beginning the forever
loop again.

#Note there is an “off()” between each number.
This is because just like we discovered in the LED
Blink Code, if you turn it on, it stays on until you tell
it to turn off.

#What do you think happens if we don’t include the
“off()” between each number?

