| Место для баллов: | Код: |
|-------------------|------|
|                   |      |

четвертый этап республиканской олимпиады по «Биологии» (2015-2016)

# КАБИНЕТ № 3 (25 баллов)

#### ГЕНЕТИКА И МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

Перед выполнением заданий убедитесь, что на Вашем рабочем столе имеются

соцветие традесканции *Tradescantia* (клон 02), капельница с 45 % уксусной кислотой, капельница с 1 % раствором ацетоорсеина в 45 % уксусной кислоте, предметное стекло, 2 покровных стекла, 2 препаровальные иглы, фильтровальная бумага, исследовательский микроскоп.

Если что-то из перечисленного отсутствует, немедленно поднимите руку и позовите дежурного преподавателя!

#### **Цитогенетика** (15 баллов)

За да ни е 1 (8 баллов). Приготовление препаратов тетрад микроспор традесканции Tradescantia (клон 02) для анализа методом световой микроскопии.

Традесканция (клон 02) — наиболее часто используемый растительный объект для оценки мутагенных свойств химических и физических факторов *in situ*. Клон был получен из природной популяции и является гибридом между *Tradescantia occidentales Pritton* ex. Rydb. и *Tradescantia ohiensis* Raf.

В ряде исследований по радиационному и химическому мутагенезу было установлено, что клетки традесканции (клон 02) близки по чувствительности к клеткам животных организмов в отношении потери репродуктивной способности. Генетическая же изменчивость данного объекта минимальна, так как объект представляет собой вегетативно размножающийся клон.

С помощью традесканции (клон 02) выявляют действие

| ракторов внешней среды на генетический аппарат генеративных |  |
|-------------------------------------------------------------|--|
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |

клеток. Для этого изучают появление микроядер и других аберраций хромосом в мейозе на стадии тетрад микроспор.

Тетрада (от греч. tetras, род. падеж tetrados четвёрка) — характерная для растений группа из четырёх клеток, образующихся в результате мейоза из одной материнской диплоидной клетки (микроспороцита или мегаспоры).

### Ход работы

**1.** Выложите соцветие на предметное стекло и, удерживая его одной препаровальной иглой, отделите второй препаровальной иглой развивающийся цветок.

ВНИМАНИЕ!!! Клетки на стадии тетрад микроспор находятся в 3-5 цветке от начала соцветия (см. рисунок). Для того, чтобы сделать «удачный» препарат, придется отделить несколько цветков.

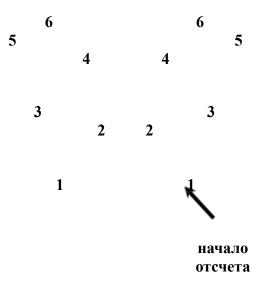



Рис. 1 – Схема соцветия

2. Из цветка осторожно с помощью препаровальных игл извлеките пыльники и оставите их на предметном стекле. Остальное следует с помощью игл и фильтровальной бумаги удалить с предметного стекла.

- **3.** Нанесите на пыльники 1-2 капли ацетоорсеина, и держа препарат за края стекла, подогрейте над пламенем спиртовки 1-2 мин. Окрашивать пыльники необходимо до однородного темно-красного цвета.
- ВНИМАНИЕ!!! Не перегревайте препарат! Не допускается вскипания красителя! Нужную степень нагревания можно контролировать при прикосновении предметного стекла к руке: стекло не должно обжигать руку. Если краситель испариться, его нужно добавить еще раз.
- **4.** Оставьте пыльники в капле красителя на 3-5 мин для более интенсивного окрашивания.
- **5.** Отмойте пыльники от остатков высохшего красителя, добавив несколько капель 45 % раствора уксусной кислоты и промокнув предметное стекло фильтровальной бумагой.
- 6. На готовый препарат нанесите каплю 45 % раствора уксусной кислоты и накройте покровным стеклом. Аккуратно надавите на покровное стекло без бокового смещения, добиваясь разрушения пыльника, а также полного и равномерного распределения клеток в один слой.
- 7. Найдите на препарате стадию тетрад микроспор. После того, как окончите работу поднимите руку и попросите, чтобы к Вам подошел преподаватель и оценил качество выполнения препарата.

| Оценка з | а качество і | препарата |  |
|----------|--------------|-----------|--|
| Оценка з | a Kayeeibu i | ipenapara |  |

<u>За да ни е 2 (6 баллов)</u>. Зарисуйте стадию тетрад микроспор, указав на рисунке следующие структуры:

- каллоза;
- первичная экзина (примэкзина);
- микроспора;
- ядро микроспоры.

# Место для рисунка:

| Оценка за | рисунок | _ |
|-----------|---------|---|
| Оценка за | DHCYHUK | • |

За дание З (1 балл). Укажите относительное число хромосом (n) и относиельное число хроматид (m) для одной клетки в составе тетрады и для всей тетрады в целом. Данные внесите в таблицу.

| Количество | Число    |
|------------|----------|
| хромосом   | хроматид |
| (          | (        |
| n          | m        |

| = |  |  |
|---|--|--|
|   |  |  |
|   |  |  |

|                       | ) |
|-----------------------|---|
| Отдельная<br>клетка в |   |
| тетраде               |   |
| Тетрада в целом       |   |

#### Генетика и молекулярная биология (10 баллов)

Перед выполнением заданий убедитесь, что на Вашем рабочем столе имеются

штатив; 2 пробирки с пигментом, выделенным из венчика анализируемых растений Традесканция Андерсона (промаркированные «P1» и «P2»); 2 пробирки с 4 мл воды (промаркированные «образец P1» и «образец P2», 2 пробирки с 10 мл воды, 2 пипетки, 2 кюветы для спектрофотометрических исследований, фильтровальная бумага, химический стакан.

Если что-то из перечисленного отсутствует, немедленно поднимите руку и позовите дежурного преподавателя!

# За д а ни е 4 (6 баллов). Определение генотипа гибридных форм

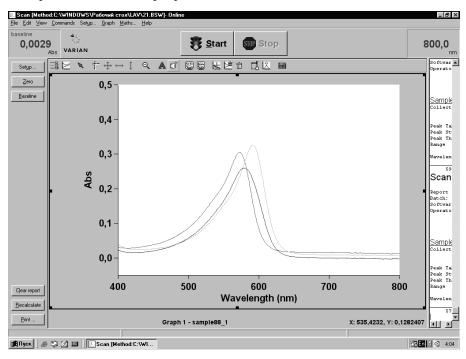
Традесканции Андерсона (Tradescantia andersoniana).

Используя предложенную ниже информацию, определите генотип Растения 1 (Р1) и Растения 2 (Р2), которые были использованы для получения вытяжек пигмента из венчика, если известно, что:

под названием **Традесканция Андерсона** (*Tradescantia andersoniana*) обычно понимают садовые гибриды, полученные с участием традесканции виргинской. Окраска цветков у изучаемых гибридов находится под контролем двух генов. Аллель I определяет окрашенный венчик, а і — неокрашенный (белый). Характер окраски венчика определяется серией множественных аллелей гена A, по порядку доминирования аллели можно расположить следующим образом: Av (фиолетовая)  $> a_p$  (пурпурная)  $> a_w$  (белая);

пигмент, полученный из венчика гомозиготных растений с фиолетовыми цветками, имеет максимум поглощения при длине волны в 590 нм:

пигмент, полученный из венчика гомозиготных растений с пурпурными цветками, имеет максимум поглощения при длине волны в 572 нм;


в венчике белых растений с генотипом *Памам* пигмент не выявляется:

у Растения 1 и Растения 2 венчик имеет фиолетовую окраску.

#### Ход работы

- 1. С помощью пипетки внесите равное (!) количество пигмента (1 мл или 8-12 капель) из пробирок «Р1» и «Р2» в пробирки промаркированные «образец Р1» и «образец Р2», перемешайте до равномерного окрашивания водного раствора. Содержимое пробирок аккуратно перенесите в кюветы для спектрофотометрического анализа (заполнять кювету до матового канта).
- 2. Возьмите кюветы, бланк ответов, ручку и подойдите к столу, на котором установлен спектрофотометр. Передайте оператору кювету с образцом и следите за построением на мониторе графика спектра поглощения изучаемого образца. Запишите в бланк ответов, значения, указанные оператором.

Вид рабочей области программы Scan



3. Проделайте аналогичные процедуры со вторым образцом. Заполните таблицу и дайте на подпись оператору.

|            | X Wavelenght (nm)<br>(формат записи<br>535,4) | Y Abs<br>(формат<br>записи<br>0,12<br>8) |
|------------|-----------------------------------------------|------------------------------------------|
| образец Р1 |                                               |                                          |
| образец Р2 |                                               |                                          |

| Подпись опе | narona |  |
|-------------|--------|--|
| тюдиись опс | ратора |  |

4. По окончании измерений вернитесь на свое рабочее место, содержимое кювет вылейте в стакан, кюветы трижды промойте дистиллированной водой (из пробирок с 10 мл воды) и поставить сушиться на фильтровальную бумагу.

Проанализируйте представленную схему скрещивания:

| P<br>: | Растение<br>1<br>х | iia <sub>p</sub> a <sub>p</sub> | P : | Растение<br>2  | X | iiapap     |
|--------|--------------------|---------------------------------|-----|----------------|---|------------|
|        | фиолетовый         | белый                           |     | фиолетовы<br>й |   | белы<br>й  |
|        | венчик             | венчик                          |     | венчик         |   | венч<br>ик |
| F      | белый              | 50%                             | F   | белый          |   | 50         |
| a:     | венчик             |                                 | a:  | венчик         |   | <b>%</b>   |
|        | фиолетовый         | 40%                             |     | фиолетовый     |   | 10<br>%    |
|        | пурпурный          | 10%                             |     | пурпурный      |   | 40<br>%    |

5. Используя полученные Вами данные по спектрофотометрии и анализирующему скрещиванию, определите генотип Растения 1 и Растения 2. Заполните предложенную таблицу (если Вы считаете,

что указанные гаметы не могут быть образованы у данного организма, в соответствующей ячейке пишем <0> или <нет>).

|               | Частота образования гамет, % |            |
|---------------|------------------------------|------------|
| Генотип гамет | Растение 1                   | Растение 2 |
| I             |                              |            |
| A<br>V        |                              |            |
| I             |                              |            |
| a<br>p        |                              |            |
| I             |                              |            |
| a<br>w        |                              |            |
| i             |                              |            |
| A<br>V        |                              |            |
| i             |                              |            |
| a<br>p        |                              |            |
| i             |                              |            |
| a<br>w        |                              |            |

| Генотип Растения 1 |  |
|--------------------|--|
|                    |  |
|                    |  |
| Генотип Растения 2 |  |

| Комбинац                    | Ожидаемая доля фенотипических классов в F1 (%) |           |       |  |
|-----------------------------|------------------------------------------------|-----------|-------|--|
| ия<br>родительск<br>их форм | фиолетовая                                     | пурпурная | белая |  |
| P1 x P1                     |                                                |           |       |  |

|   | н | _ |
|---|---|---|
| - | Ħ |   |
|   | Ξ | _ |
|   |   | _ |

| P2 x P2 |  |  |
|---------|--|--|
| P1 x P2 |  |  |

а д а ни е 5 (4 балла). Укажите ожидаемое соотношение фенотипических классов в  $F_1$  при скрещивании между собой анализируемых растений  $P_1$  и  $P_2$ . Данные внесите в таблицу.