
CS 1575 - Data Structures

Notes on Pointers and Classes

Pointers to Classes

Pointers can be used with classes like any other datatype.

Example:
class MyClass

{

int x;

}

…
MyClass *p; // a pointer to class MyClass

p = new MyClass; // dynamically allocated class

De-referencing a pointer to a class

p -> x

Accesses the xmember of the class type pointed by p.

The * operator can also be used, but due to its low preference usually requires
parenthesis to use correctly.

Example:
MyClass *p;

p = new MyClass;

p -> x = 5; // assigns 5 to member x

(*p).x = 6; // assigns 6 to member x

*p.x = 7; // ERROR: p.x is not a pointer

The ‘this’ pointer

Inside every non-static member functions, the variable:
T* const this;

holds the address of the class object from which the member function was
invoked.

Example:
class MyClass

{

int x;

void foo () {

this -> x = 42 // using ‘this’ explicitly to assign a value to x

}

}

Classes with Pointer members

C++ automatically generates 3 member functions methods for every class. These
are the destructor, the copy constructor, and the operator=.

The Destructor
Called automatically by C++ when a class goes out of scope or is deallocated with
delete.

The Copy Constructor
Called when:

1. declaration with initialization.
MyClass B = A;

MyClass B (A);

2. when an object is passed by value (instead of using & or const &).
(which you should not do)

3. when an object is returned by value (instead of using & or const &).
(which you should not do either)

The Operator=
Used when assignment between objects is used
A = B;

For a class MyClass, the default member functions are:

/* DESTRUCTOR */

MyClass::~MyClass()

{

}

/* COPY CONSTRUCTOR */

MyClass::MyClass(const MyClass &rhs) : x (rhs.x)

{

}

/* OPERATOR= */

const MyClass & MyClass::operator= (const MyClass & rhs)

{

if (this != &rhs) // Standard alias test

x = rhs.s;

return *this;

}

The defaults can cause problems when a class has a pointer member and this
member is used for dynamically allocating memory.

Example:

class IntBox

{

private:

int *m_int;

public:

IntBox (int initValue = 0) { // constructor

m_int = new int(initValue);

}

int read () const { // accessor

return *myInt;

}

void write (int x) { // mutator

*m_int = x;

}

}

int foo(){

IntBox a(7)

IntBox b = a;

IntBox c;

c = b;

a.write(4);

cout << a.read() << “ “ << b.read() << “ “ << c.read() << endl;

// all values are ‘4’ !!!

return 0

}

The default copy constructor and operator= copy only the pointers, not the
memory pointed to. This is called a “shallow copy”, and may not be the
functionality you intended.

NOTE! : Whenever you create a class which has pointer members, consider
overwriting the default member functions.

END.

