

Shared with Istio Community

Mesh Configuration Protocol (MCP)

Authors: jasonyoung@google.com
Work-Group: config
Short self link: https://goo.gl/EJu5hg
Contributors: @andraxylia, @ozevren,
@geeknoid
Reviewers:

Status: WIP | In Review | Approved | Obsolete​
Created: 04/23/2018
Release Version: N/A
Approvers: mtail@google.com [x], ozben@google.com
[x]

Objective
We need a cohesive story for how components receive config from Galley, with as much shared
code and technology as possible across the product. Istio components include Mixer, Pilot, Citadel,
and Pilot-agent. See Istio Config Architecture for a high-level overview.

Problem
●​ Pilot and Mixer components are tightly coupled to the underlying platform for configuration.

e.g. k8s api-server is required. It’s difficult to test components standalone. Extending and
integrating into different environments requires per-component code changes.

●​ Validation, ACL’ing, versioning, and schema upgrades is non-existent and/or not consistent

across components. These concerns should largely be decoupled from runtime
components and handled prior to config distribution.

●​ Config distribution is too coarse. The overall config input space is potentially quite large. It’s

not possible to distribute a subset of config space to subsets of component instances.
​

●​ Component config is spread across CRD, ConfigMaps, and binary flags. ConfigMaps and
flag often require restarting components or pods to adopt new config. It’s desirable to have
one consistent approach to consume all istio runtime config.

●​ Component config consumption could be more efficient. K8s CRD are stored and

transported as JSON. Components use protobuf at runtime. Each component incurs
CPU/memory cost of YAML/JSON-to-Proto conversions. It’s desirable to centralize
conversions.

Shared with Istio Community

https://goo.gl/EJu5hg
mailto:mtail@google.com
mailto:ozben@google.com
https://goo.gl/Jft4jf
https://kubernetes.io/docs/admin/cluster-large
https://github.com/istio/istio/blob/master/install/kubernetes/helm/istio/templates/configmap.yaml
https://github.com/istio/istio/blob/master/pilot/cmd/pilot-agent/main.go#L276-L319

Non-Goals

●​ The user facing authoring model continues to depend on k8s api-server for configuration.
This doc only addresses how components receive their configuration.

Proposal

●​ Use GRPC bidirectional streaming to push configuration updates to components. This
client/server protocol is a subscription model based on Envoy’s xDS gRPC protocol. We
can give this a different name to avoid confusion, e.g. Mesh Configuration Protocol (MCP).
Components subscribe to the relevant resource types.

●​ MCP carries existing Istio APIs defined in istio/api, e.g. istio/api/networking,

istio/api/authentication, istio/api/mesh. Resources are transported as protobuf. Metadata
(e.g. name) must be encoded in the resource directly as a submessage.

Shared with Istio Community

https://docs.google.com/document/d/1rMb7Qr2_QzRXdLXNB_R9fRyVUJgIfWZDCzQm8Bu0ID4/edit#heading=h.49cyzd2lecma
https://github.com/envoyproxy/data-plane-api/blob/master/XDS_PROTOCOL.md
https://github.com/istio/api

●​ Galley implements MCP server. Introduce adapter model whereby config ingestion is

plugable. Support for CRD and file based watch are initially supported. Config ingested
through adapter is mapped onto xDS watch subscription. Adapters can initially be
in-process and alternatively moved out-of-process.

●​ Alternate MCP server implementations may be created to simplify testing and local

development. Partners may also integrate with istio runtime components directly using
MCP.

Migration path

A similar proposal has been written from the perspective of Pilot — see Decomposing Pilot. Mixer
and other Istio components can gradually move to the new model. The eventual intent is for:

1.​ Istio components to be platform-agnostic, consuming Istio configuration through MCP.
2.​ Galley to provide the server implementation of MCP fully integrated with Kubernetes. Galley

is responsible for config validation, enhancing ACL’ing, versioning, schema upgrades, etc.
3.​ Platform partners can integrate Pilot, Mixer, etc. using the same set of APIs (MCP)

It’s desirable to move incrementally towards this new model. To that end, existing CRDs will be
preserved and Galley will per-resource xDS subscription 1-to-1 with k8s CRDs. Galley can be
optionally configured (via feature flag) to perform this function. Components can be optionally
configured (via feature flag) to subscribe to configuration updates from Galley (vs. k8s directly).

Open Items
The following open items will be addressed incrementally.

●​ All Istio APIs need embedded metadata. Unit of xDS resource delivery is protobuf. Each
protobuf must be fully self-describing. Current types lack metadata (e.g. name, namespace,
labels).

●​ Declarative validation. Functional domains should be able to define validation schemas and
have someone else (i.e. Galley) validate it. Istio API schemas should be annotated
accordingly.

●​ Enhanced ACL model for Istio resources. e.g. networking API should be ACL’d by
ownership of network name (host)

●​ Auth{n,z} between Galley and runtime components. Strawman: mTLS for authn. Separate
policy discussion needed for authz

Shared with Istio Community

https://docs.google.com/document/d/1S5ygkxR1alNI8cWGG4O4iV8zp8dA6Oc23zQCvFxr83U/edit#heading=h.x9snb54sjlu9

Appendix

(MCP) xDS protocol overview

Here’s a brief summary of Envoy’s xDS protocol applied to Istio config. Istio components are gRPC
clients. Galley is the gRPC server. Components request config via subscriptions by initiating a
gRPC stream and sending ConfigRequest protobuf. Config is delivered in ConfigResponse
protobufs. “Push” semantics are achieved by clients always sending a ConfigRequest after
receiving a ConfigResponse and Galley only sending ConfigResponse when new config is
available.

Whereas Envoy has discovery services (EDS/CDS/RDS/LDS/etc) plus an aggregate service
(ADS), the Istio config distribution service could be dimensioned by component type (Pilot, Mixer,
Agent, etc.) or as a single aggregate service. See the xDS protocol docs for a more thorough
explanation of the protocol and how ACK/NACKs and versioning are handled.

Alternatives considered

●​ Alternative design proposal - Galley Watch API design proposal
●​ Alternative prototype - https://github.com/ayj/istio/commit/45dc13f62cd1a

Use googleapis watcher API to stream declarative configuration data to components. Components
watch a named entity that corresponds to their desired configuration state. The entity corresponds
to a collection of elements to allow for composition and reuse across updates. In turn, components
receive an ordered and reliable stream of configuration state.

Shared with Istio Community

https://github.com/envoyproxy/data-plane-api/blob/master/XDS_PROTOCOL.md
https://docs.google.com/document/d/17-ma45zVLwrOdpPiOndjtQIGA901mrhLzEDk7NyGgf0/edit
https://github.com/ayj/istio/commit/45dc13f62cd1a3

	Mesh Configuration Protocol (MCP)
	Objective
	Problem
	Non-Goals

	Proposal
	Migration path
	Open Items

	Appendix
	(MCP) xDS protocol overview
	Alternatives considered

