
2024-07-18 (ModArith Discussion)
●​ * start recording *
●​ Context: Modular arithmetic representing in HEIR

○​ How do hardware accelerators and software backends with modular
representation assumptions baked in - HW accelerators may also require
montgomery representation from the start

○​ Software world - standard lowerings to arith / LLVM that assume semantics about
ops - what are the limitations here?

●​ Goal:
○​ Understand coexisting requirements and document for later passes to adhere
○​ How do we represent types and ops with specific modular representations? Right

now we have arith_ext, can we design something cleaner?
●​ arith_ext problems:

○​ Asserting and modeling the range that an integer type starts in (barrett reduction
pass, HeaNN passes that also use sub if ge optimization)

●​ Ideas for how to model / assert range:
○​ Could track integer range via analysis pass that uses info from reduction ops and

attributes
■​ Cons: Other passes may not preserve attributes
■​ Pros: One time pass
■​ Questions: add a hook to update analysis on values during IR

transforms?
●​ arith problems:

○​ Builtin passes that may rely on i32 wraparound semantics rather than modular-ly
reduced

○​ Still need modular semantics on arithmetic
●​ In hardware, what are the container types? Still power of two word sizes?

○​ Not sure about optalysys photonics hw?
○​ Alex: still a fixed number of bits
○​ Maybe we have attributes with the modulus operand but still uses container

integer type
○​ Using integerlike types would still be fine, as long as we have custom dialect
○​ integerlike types are also hard-coded in the polynomial type, conversion from

poly to standard would be as easy as pulling the cmod modulus from ring
attribute into a mod_arith op attribute

●​ No way to tell whether something is normal modular arithmetic or special (montgomery
mod), and that changes the lowering to arith

●​ If the input is already modularly reduced, we have no way of telling it’s range (barrett
bound q^2 or other e.g. q or q/2)

●​ Do we need func attributes marking known range?
○​ probably not

●​ Mod arith op attributes can be used in analysis pass or as instructions on how to lower:
○​ re.g. range attribute indicates how: random.sample { range = [0, q] } is lowered

●​ What are the size of the inputs of mod_arith?
●​ representation forms:

○​ mod_arith forms: barrett, montgomery<scalar>, reduced (0 to q)
●​ Modular arithmetic operation contracts:

○​
●​ Steps:

○​ Rename arith_ext to mod_arith
○​ Add representation attributes
○​ Extend integer range analysis to work on tensors and understand mod arith

attributes
○​ Extend RNS

func.func(arg0 : int16 { mod_arith.reduced })
func.func(arg0 : int16 { mod_arith.UNKNOWN }):
​ %reduced_arg0 : mod_arith.reduce arg0 {mod_arith.reduced} : int16

	2024-07-18 (ModArith Discussion)

