2024-07-18 (ModArith Discussion)

* start recording *
Context: Modular arithmetic representing in HEIR
o How do hardware accelerators and software backends with modular
representation assumptions baked in - HW accelerators may also require
montgomery representation from the start
o Software world - standard lowerings to arith / LLVM that assume semantics about
ops - what are the limitations here?
Goal:
o Understand coexisting requirements and document for later passes to adhere
o How do we represent types and ops with specific modular representations? Right
now we have arith_ext, can we design something cleaner?
arith_ext problems:
o Asserting and modeling the range that an integer type starts in (barrett reduction
pass, HeaNN passes that also use sub if ge optimization)
Ideas for how to model / assert range:
o Could track integer range via analysis pass that uses info from reduction ops and
attributes
m Cons: Other passes may not preserve attributes
m Pros: One time pass
m Questions: add a hook to update analysis on values during IR
transforms?
arith problems:
o Builtin passes that may rely on i32 wraparound semantics rather than modular-ly
reduced
o Still need modular semantics on arithmetic
In hardware, what are the container types? Still power of two word sizes?
o Not sure about optalysys photonics hw?
o Alex: still a fixed number of bits
o Maybe we have attributes with the modulus operand but still uses container
integer type
Using integerlike types would still be fine, as long as we have custom dialect
integerlike types are also hard-coded in the polynomial type, conversion from
poly to standard would be as easy as pulling the cmod modulus from ring
attribute into a mod_arith op attribute
No way to tell whether something is normal modular arithmetic or special (montgomery
mod), and that changes the lowering to arith
If the input is already modularly reduced, we have no way of telling it's range (barrett
bound g*2 or other e.g. q or g/2)
Do we need func attributes marking known range?
o probably not
Mod arith op attributes can be used in analysis pass or as instructions on how to lower:
o re.g. range attribute indicates how: random.sample { range = [0, q] } is lowered
What are the size of the inputs of mod_arith?
representation forms:
o mod_arith forms: barrett, montgomery<scalar>, reduced (0 to q)
Modular arithmetic operation contracts:



o Rename arith_ext to mod_arith

o Add representation attributes

o Extend integer range analysis to work on tensors and understand mod arith
attributes

o Extend RNS

func.func(argO : int16 { mod_arith.reduced })
func.func(argO : int16 { mod_arith. UNKNOWN }):
%reduced_arg0 : mod_arith.reduce arg0 {mod_arith.reduced} : int16



	2024-07-18 (ModArith Discussion) 

