
Starting a thread should not be janky (PUBLIC)

kinuko@ Mar 2015 (Last updated: April 14, 2015)

Tracking bug: https://crbug.com/465458
Patches: 1 2 3
Supporting document that may help understanding: Anatomy of Chromium MessageLoop

TL;DR: This document discusses making base::Thread::Start() return without waiting for the
thread to start in order to remove jank on the IO and UI thread especially during startup. There
are several possible approaches, and this document discusses each.

Background:

Chrome (and Blink) uses base::Thread class for creating and starting a new thread, but it is
suspected that Start() method of base::Thread is causing jank on IO thread and UI thread [1][2].
On the jankiness dashboard it is identified 11th jankiest action on Windows . The biggest1

reason this contributes to jank is base::Thread::Start() blocks the calling thread until the newly
created thread actually starts running and finishes initialization. We’ve been fixing these one by
one (e.g. http://crbug.com/454983) but it is easy to introduce new jank in the current
architecture. The current design is fine when the system is not overloaded, but could cause
jank otherwise, especially during the chrome startup time where Chrome creates 40+ threads in
browser process and make the system heavily loaded.

Solution:

There are a few possible solutions proposed by several folks (see https://crbug.com/465458 for
more details), but essentially what (we think) we want to do is: make base::Thread::Start() return
without waiting for the thread to get started. To make this not break the callers, Start method
should set up a usable MessageLoop (or TaskRunner at least) that allows callers to start posting
a task, regardless of whether the thread has actually started or not.

Another idea that was discussed is to move the thread creation part to a background thread if
the callers care about the jank, but this solution is not scalable and new code could easily
introduce jank. There’s also an ongoing longer-term plan to move many of the threads to a
thread pool, which should also drastically reduce the thread creation cost on the main thread.

1 As of Apr 14, 2015. To be more specific: 17th jankiest on UI@Browser, 32th jankiest on IO@Browser,
6th jankiest on Main@Renderer, and 9th jankiest on IO@Renderer.

https://crbug.com/465458
https://codereview.chromium.org/1011683002/
https://codereview.chromium.org/1086663002/
https://codereview.chromium.org/1058603004/
https://docs.google.com/document/d/1_pJUHO3f3VyRSQjEhKVvUU7NzCyuTCQshZvbWeQiCXU/edit#heading=h.okllz7fdmm0
https://code.google.com/p/chromium/codesearch#chromium/src/base/threading/thread.cc&q=Thread::Start()&sq=package:chromium&l=88&type=cs
https://code.google.com/p/chromium/codesearch#chromium/src/base/threading/thread.h&q=thread&sq=package:chromium&l=1
https://code.google.com/p/chromium/issues/detail?id=457525
https://crbug.com/426272
http://crbug.com/454983
https://crbug.com/465458


Current Architecture:

In order to understand what approaches are available to address this we need to know how
Thread and MessageLoop are handling newly posted tasks in the current architecture.

base::Thread works closely with MessageLoop. Notably it creates a new MessageLoop on the
newly created thread and calls MessageLoop::Run() to start running tasks. base::Thread also
exposes Thread::message_loop() getter so that new tasks can be posted to the message loop
via MessageLoop::PostTask(). The following figure summarizes what the current code is doing
curing the thread startup:

The overview of how MessageLoop’s PostTask and Run methods work is explained in this
document. In short, MessageLoop’s PostTask and Run methods are tightly coupled with a few
related classes, namely: MessagePump, MessageLoopProxyImpl and IncomingTaskQueue.
IncomingTaskQueue is a thread-safe task queue and it provides implementation details for
MessageLoop to queue up incoming tasks. All tasks posted to the MessageLoop are routed to
IncomingTaskQueue via MessageLoopProxyImpl (which provides TaskRunner interface for the
MessageLoop). MessageLoop itself has its own local work queue, which is not thread-safe and
periodically reloaded from IncomingTaskQueue during MessageLoop::Run. In other words,
MessageLoop expects the TaskRunner implementation (i.e. MessageLoopProxyImpl) to
eventually queue the tasks to IncomingTaskQueue.

https://docs.google.com/document/d/1_pJUHO3f3VyRSQjEhKVvUU7NzCyuTCQshZvbWeQiCXU/edit#heading=h.okllz7fdmm0
https://docs.google.com/document/d/1_pJUHO3f3VyRSQjEhKVvUU7NzCyuTCQshZvbWeQiCXU/edit#heading=h.okllz7fdmm0


Possible Approaches:

There are at least three different approaches to make Start return immediately:

● Approach 1: Refactor MessageLoop so that it can be created on a different thread from
the thread where the message loop eventually runs. Thread::Start() method can then
create a message loop before creating a thread and return immediately. The message
loop should be able to be lazily initialized on the newly created thread. The message
loop should start accepting PostTask’s right after its creation, but will start running those
tasks only after it’s initialized on the new thread.

○ Prototype patch: https://codereview.chromium.org/1011683002/
○ Pros: Existing consumer of Thread class should just work.
○ Cons: This adds new state to MessageLoop class after the loop is created and

before it is initialized. How consumers can interact with the message loop during
this state is explained here.

○ Necessary changes:
■ MessageLoop’s initialization logic needs to be changed. This also

involves changes in IncomingTaskQueue and MessageLoopProxyImpl.

● Approach 2: Create a mock TaskRunner in Thread::Start() and provide it as the primary
post-tasking interface for customers until the new thread gets started. The mock
TaskRunner is responsible for queueing tasks until it gets the real task runner. When the
new thread is started we re-post all tasks to the real one. Customers of base::Thread
should use base::Thread::task_runner() (which returns the mock task runner before
thread starts, and real one after that) to post tasks. This requires no changes in
MessageLoop but has multiple subtle consequences, which may not be really
problematic but I listed them as ‘cons’ below.

○ Prototype patch: https://codereview.chromium.org/1086663002/
○ Pros: No need to modify MessageLoop class.
○ Cons: We need extra locks in each PostTask. We could add this lock only for the

customers that have obtained the task runner before the thread starts up, but
doing so requires another lock in Thread::task_runner().

○ Cons: PostTask semantics will be slightly changed for the tasks that are posted
before the thread starts. For example: if we re-post all tasks naively the tasks
that are posted with ‘X’ delay will be executed after ‘X’ + ‘Y’ if the thread has
started after ‘Y’ since the task is posted. If we take the ‘Y’ delay into account
when reposting it will then affect how the IncomingTaskQueue marks each task
as ‘requires high-resolution timing’. Similarly TaskAnnotator will record the
‘DidQueueTask’ timing not when the task is posted initially, but when the task is
reposted.

https://codereview.chromium.org/1011683002/
https://codereview.chromium.org/1086663002/


○ Cons?: After switching the task runner the task runner equality comparison using
== wouldn’t work. (Should be minor as the caller should use
RunsTasksOnCurrentThread() instead)

○ Necessary changes:
■ We need to change all consumers of base::Thread::message_loop() and

base::Thread::message_loop_proxy() to use Thread::task_runner() and
TaskRunner interface.

● Approach 3: Create a TaskRunner that talks to IncomingTaskQueue in Thread::Start()
and provide it as the primary post-tasking interface for customers. The TaskRunner can
be used for PostTask’s regardless of whether the new thread has started or not. Thread
passes the IncomingTaskQueue to the MessageLoop when it is created on the new
thread. Customers of base::Thread should use base::Thread::task_runner() (which
returns the task runner) to post tasks.

○ Prototype patch: https://codereview.chromium.org/1058603004/
○ Pros: The change required to MessageLoop is smaller than approach 1, and we

can preserve existing PostTask semantics as we reuse the same
IncomingTaskQueue code.

○ Cons: This makes the relationship between Thread and MessageLoop a bit
tighter as it lets the thread class deal with IncomingTaskQueue.

○ Necessary changes:
■ IncomingTaskQueue’s initialization sequence needs to be changed so

that it can be constructed without/before MessageLoop.
■ We need to change all consumers of base::Thread::message_loop() and

base::Thread::message_loop_proxy() to use Thread::task_runner() and
TaskRunner interface.

Design Details:

Approach 1 (Refactor MessageLoop initialization logic):

This approach basically splits the MessageLoop initialization into two-phases:
1. first to create an ‘inactive’ loop without a pump (but just be able to accept new tasks),
2. and then to bind the loop to the newly created thread once the thread actually started.

The following figure shows how base::Thread::Start (or StartWithOptions) would look like after
refactoring with approach 1:

https://codereview.chromium.org/1058603004/


The change itself is rather straightforward, we stop calling Init() in the constructor, but instead let
the customer call it on the new thread. The new constructor creates a MessageLoop which has
no pump yet, and we make it valid to instantiate a new MessageLoop on a different thread from
the final ‘current’ thread.

MessageLoop will have a new ‘unbound’ state before Init() is called, where it has no associated
thread or pump. However it is possible to make all public methods that can be called on a
different thread from the final ‘current’ one callable right after its construction. Namely, PostTask
methods family and ScheduleWork are the only methods that can be called on any threads, and
we can make the former available right after the MessageLoop construction, and can make the
latter private that can be called only from IncomingTaskQueue (whose design is tightly coupled
with MessageLoop anyway).



Approach 2 (Have Mock TaskRunner Accumulate Tasks):

The following figure shows how base::Thread::Start (or StartWithOptions) would look like after
refactoring with approach 2:

The ‘mock’ task runner would look like following (in pseudo code):

class TaskAccumulator : public TaskRunner {

public:

// Sets the given task_runner as the internal one and

// repost all queued tasks to the internal one.

void SetInternalTaskRunner(task_runner) {

AutoLocker locker(lock_);

internal_task_runner_ = task_runner;

while (!task_queue_.empty()) {

internal_task_runner_->PostTask(task.from_here, task.task, task.delay);

task_queue_.pop();

}

}

// Forwards the task to the internal task runner if it’s already there,

// just accumulates it in the queue otherwise.

bool PostTask(from_here, task, delay) {

AutoLocker locker(lock_);



if (internal_task_runner_)

return internal_task_runner_->PostTask(from_here, task, delay);

return task_queue_.push(Task(from_here, task, delay));

}

private:

Lock lock_;

scoped_refptr<TaskRunner> internal_task_runner_;

std::queue<Task> task_queue_;

};

Approach 3 (Pre-create IncomingTaskQueue and Pass it to MessageLoop):

This approach is a bit similar to approach 2, but we create a thin TaskRunner that wraps
IncomingTaskQueue, and pass the IncomingTaskQueue to the MessageLoop when it is created
upon thread startup. No locking is required as the TaskRunner and MessageLoop will share the
IncomingTaskQueue, which is a thread-safe ref-counted class that has a thread-safe task
queue.

The following figure shows how base::Thread::Start (or StartWithOptions) would look like after
refactoring with approach 3:

The task runner that wraps IncomingTaskQueue would look like following (in pseudo code):

class IncomingTaskQueueTaskRunner : public TaskRunner {

public:

bool PostTask(from_here, task, delay) {



return incoming_task_queue_->AddToIncomingQueue(from_here, task, delay);

}

scoped_refptr<IncomingTaskQueue> incoming_task_queue() {

return incoming_task_queue_;

}

private:

scoped_refptr<IncomingTaskQueue> incoming_task_queue_;

};

Common Changes that are Necessary Regardless of Approaches

Implementation Note for POSIX Systems

Currently PlatformThread::Create implementation for POSIX also blocks until the newly created
thread starts, and Thread::Start() relies on PlatformThread::Create() internally, so only changing
Thread::Start() does not really make starting a thread wait-free. Changing the
PlatformThread::Create non-blocking for POSIX requires a bit more work, and this document
does not discuss the details for the change. (You can find WIP patch for this here)

Making Thread::thread_id() not racy

(Note that this issue needs to be addressed regardless of which approach we take)
As noted in the solution section, if we change Thread::Start() to return immediately before a new
thread actually starts, Thread::thread_id() value will become racy since it will be initialized lazily
on the new thread when it starts to run. This means that accessing thread_id() could return
kInvalidThreadId undeterministically depending on the timing. A possible solution to work
around this issue is platform-dependent:

On Windows: We have a non-blocking API to get the thread ID without waiting for the thread to
start, e.g. GetThreadId() or via CreateThread(), so we can simply use these APIs instead of
GetCurrentThreadId() which needs to be called on the newly created thread. In the proposing
patch I changed PlatformThread::Create() to include the new thread ID in the
PlatformThreadHandle that PlatformThread::Create returns.

On POSIX: As noted in the implementation note for POSIX section, currently
PlatformThread::Create() blocks until the new thread starts, and this is done mainly to return a
valid thread ID when PlatformThread::Create() returns. This is not ideal for our main purpose
(i.e. make starting a thread not janky) but for the time being this helps us make thread_id() not
racy, since we can simply use the value returned by PlatformThread::Create(). I plan to utilize
this fact to make the outer Thread::Start() non-blocking initially, then plan to work on the POSIX
PlatformThread::Create() issue separately.

https://codereview.chromium.org/1030473003/
https://codereview.chromium.org/1011683002/#ps440001
https://codereview.chromium.org/1011683002/#ps440001


The question here is how we make thread_id() not racy for POSIX after we change
PlatformThread::Create() non-blocking. One approach is probably to change all
platform-dependent code that uses kernel task ID to use thread handle, though it seems not
possible without changing our sandbox policy. Another approach will be to make thread_id()
blocking if (and only if) it is called before the new thread actually starts. This is probably a bit
controversial, since we might be just moving jank from Thread::Start() to Thread::thread_id() if
thread_id() is accessed right after Thread::Start() is called, but at least in my local measurement
this does not seem to be the case. With a quick patch that changes thread_id() blocking, all
thread_id() (including Chrome startup time) still returns almost instantly (0.01 ~ 0.03 msec). In
order to make sure that this will not introduce another jank we should also probably keep
watching the jankiness value on the UMA profiler.

Deprecating IOThread::InitAsync()

IOThread::InitAsync() is separated from IOThread::Init() in order to reduce jank, as
IOThread::Init (which overrides Thread::Init) runs synchronously on the newly created thread
before Thread::Start() is unblocked and returned on the calling thread in the current code base.
IOThread::InitAsync() is posted asynchronously from Init(), and is expected to be called as the
first task on the new thread.

However after MessageLoop refactoring this no longer holds: IOThread::Init() runs
asynchronously after Thread::Start() returns, and IOThread::InitAsync() no longer runs as the
first task of the new thread. This change seems to breaks bunch of browser tests on Windows,
therefore IOThread::InitAsync() needs to be merged back to IOThread::Init().

Introducing Thread::StartAndWaitForTesting()

There are several tests that assume some threads are already running when they run test code.
For example, ThreadIdNameManagerTest assumes that the target threads are already running
when it calls ThreadIdNameManager::GetName() methods right after Thread::Start(), but this no
longer holds true after this change. For these tests we also add a new method called
StartAndWaitForTesting(), which behaves mostly same as what Thread::Start() used to do, i.e.
it doesn’t return until the thread starts running.

Performance

Per the jankiness dashboard using UMA profiler currently thread startup overhead is janky
mostly on Windows, and it is ranked around 10th to 15th jankiest action. The following figure
shows execution time histograms for 7 days UMA profiler data. As it shows most of the
execution finishes less than a few msec (typically ~1ms), while small number of executions take
longer than 1 min.



Execution Time Histograms for 7 days UMA profile data (-Apr 14 2015) collected using ScopedTracker

In a very limited preliminary testing on my local Linux machine (with --trace-startup and
chrome://tracing with 5 open tabs), average duration time of Thread::StartWithOptions() for the
first 5 secs of Chrome startup has become roughly 1/4 compared with normal Chrome without
the patch. On Windows with 2 CPU BIOS settings the effect was more obvious, the average
duration time has become roughly 1/130 compared with normal Chrome without the patch.

The following graph shows each execution time of tThread::StartWithOptions() for the first 10
seconds of Chrome startup only for showing the new tab page. During the 10 seconds I could
observe that Chrome creates 33 threads, 4 on IO thread, 13 on UI thread, 13 on RendererMain
(on Renderer process) and 3 on GPU process. As is shown most execution times were less
than 1 msec, but 5 of 33 took longer than 10 msec without the patch, and two of them took
longer than 30 msec. With patch all execution times were less than 0.05 msec (which are
barely in the graph).

https://code.google.com/p/chromium/codesearch#chromium/src/base/profiler/scoped_tracker.h&q=scopedtracker&sq=package:chromium&l=38


I plan to collect more UMA data after landing this change (assuming that I can) to see the real
effect on jankiness. I also plan to measure the duration until the new thread starts (currently it
happens during the thread startup but after this change it'll likely be delayed when there's CPU
contention).

Links:

Tracking bug: https://crbug.com/465458
Patches: Approach 1 Approach 2 Approach 3

https://crbug.com/465458
https://codereview.chromium.org/1011683002/
https://codereview.chromium.org/1086663002/
https://codereview.chromium.org/1058603004/

