
RabbitMQ
●​ Distributed message broker

○​ Message broker: software that allows applications to communicate with
each other by exchanging messages

■​ Ex: user signed in to account from a new device
●​ Advantages: allows for loosely-coupled applications and new parts of systems

to be seamlessly added without affecting existing systems.
●​ Commonly used in Microservices Style Architecture
●​ Asynchronous
●​ Can be deployed on many clouds as well as on premise.
●​ Default messaging protocol: AMQP

Windows and Docker Installation
●​ Install Erlang (≥ 26.0 && < 27.0)

○​ https://erlang.org/download/otp_versions_tree.html
●​ Install RabbitMQ

○​ https://github.com/rabbitmq/rabbitmq-server/releases/download/v3.13.3/
rabbitmq-server-3.13.3.exe

RabbitMQ version Minimum required Erlang/OTP Notes

3.13.0 26.0 ●​ The 3.13 release is
compatible with
Erlang

●​ Erlang 27 (latest) is
not supported

Chocolatey Installation (Preferred)
●​ To install chocolatey, run the following command:

@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile

-InputFormat None -ExecutionPolicy Bypass -Command

"[System.Net.ServicePointManager]::SecurityProtocol = 3072; iex ((New-Object

System.Net.WebClient).DownloadString('https://community.chocolatey.org/instal

https://erlang.org/download/otp_versions_tree.html
https://github.com/rabbitmq/rabbitmq-server/releases/download/v3.13.3/rabbitmq-server-3.13.3.exe
https://github.com/rabbitmq/rabbitmq-server/releases/download/v3.13.3/rabbitmq-server-3.13.3.exe

l.ps1'))" && SET "PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin"

○​ Type choco or choco -? now
●​ To install RabbitMQ, run the following command (installs erlang as well):

choco install rabbitmq

Start the server as application

●​ Run command prompt as an administrator
●​ Navigate to sbin folder where RabbitMQ is installed and execute the commands

below
●​ To execute commands without using fully qualified paths

○​ Create a system environment variable (e.g. RABBITMQ_SERVER) for
"C:\Program Files\rabbitmq_3.13.3"

○​ Append the literal string "%RABBITMQ_SERVER%\sbin" to your system
path (aka %PATH%).

Stop RabbitMQ server on localhost

rabbitmqctl stop

Management UI Access
●​ Provides an HTTP-based API for management and monitoring of RabbitMQ

nodes and clusters

Management UI Access

●​ Can be accessed using a Web browser at http://localhost:15672/

rabbitmq-plugins enable rabbitmq_management

rabbitmq-server start -detached

Default User Access

●​ The broker creates a user guest with password guest
○​ By default, these credentials can only be used when connecting to the

broker as localhost

Core Concepts

Message Broker

●​ Accepts and forwards messages (e.g. post office)
○​ binary blobs of data ‒ messages

●​ RabbitMQ is a post box, a post office, and a letter carrier

Producer

●​ A program that sends messages is a producer.

Consumer

●​ A consumer is a program that mostly waits to receive messages.

Exchanges

●​ The producer never sends any messages directly to a queue. Instead, the
producer can only send messages to an exchange

●​ An exchange receives messages from producers and then pushes them to
queues.

●​ The exchange must know exactly what to do with a message it receives.
○​ Four exchange types to choose from:

■​ Direct – the exchange forwards the message to a queue based on
a routing key

■​ Fanout – the exchange ignores the routing key and forwards the
message to all bounded queues

■​ Topic – the exchange routes the message to bounded queues
using the match between a pattern defined on the exchange and
the routing keys attached to the queues

■​ Headers – the message header attributes are used, instead of the
routing key, to bind an exchange to one or more queues

○​ Declare properties of exchange:
■​ Name – the name of the exchange
■​ Durability – if enabled, the broker will not remove the exchange in

case of a restart
■​ Auto-Delete – when this option is enabled, the broker deletes the

exchange if it is not bound to a queue
■​ Optional arguments

●​ Therefore, the exchange decides if the message goes to one queue, to multiple
queues, or is simply discarded.

Queues

●​ name for the post box in RabbitMQ

●​ A queue is only bound by the host's memory & disk limits; it's essentially a large
message buffer that delivers messages to consumers based on a FIFO model.

●​ Many producers can send messages that go to one queue, and many
consumers can try to receive data from one queue

●​ We can define several properties of the queue:
○​ Name – the name of the queue. If not defined, the broker will generate

one
○​ Durability – if enabled, the broker will not remove the queue in case of a

restart
○​ Exclusive – if enabled, the queue will only be used by one connection

and will be removed when the connection is closed
○​ Auto-delete – if enabled, the broker deletes the queue when the last

consumer unsubscribes
○​ Optional arguments

Bindings

●​ The relationship between exchange and a queue is called a binding.

Connections

●​ The first step a client/producer must take to interact with a RabbitMQ
broker is to establish a Connection.

●​ This can be a regular TCP connection or an encrypted one using TLS.

Channels

●​ An AMQP channel is a mechanism that allows multiplexing multiple logic
flows on top of a single connection.

○​ Allows better resource usage both on the client and server side since
setting up a connection is a relatively expensive operation.

●​ A client creates one or more channels so it can send commands to the broker.
This includes commands related to sending and/or receiving messages.

●​ Note: if we close a connection, all associated channels will also be closed.

First Program - Python

(using the Pika Python client)

●​ two small programs in Python:
○​ a producer (sender) that sends a single message
○​ a consumer (receiver) that receives messages and prints them out.

●​ We will use AMQP 0-9-1 as the protocol
○​ open, general-purpose protocol for messaging

Sending

●​ to establish a connection with RabbitMQ server locally

import pika​
​
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))​
channel = connection.channel()

●​ before sending, must create a queue to which the message will be delivered

channel.queue_declare(queue='letterbox')

●​ In RabbitMQ a message can never be sent directly to the queue, must go
through exchange

○​ For the purpose of this tutorial, we will just use default exchange

message = "Hello world"​
channel.basic_publish(exchange='', routing_key='letterbox', body=message)​
queue name needs to be specified in routing_key

Receiving

●​ first we need to connect to RabbitMQ server

import pika​

connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))​
channel = connection.channel()

●​ make sure that the queue exists by using .queue_declare()
○​ .queue_declare() is idempotent – can call as many times but only one

queue will be created

channel.queue_declare(queue='letterbox')

●​ To receive message,
○​ we subscribe callback to a queue

def callback(ch, method, properties, body):​
 print(f"Received new message: {body}")​
this is called by the pika library whenever we receive a message

○​ then, consume the message by telling RabbitMQ that this particular
callback function should receive messages

channel.basic_consume(queue='letterbox',​
 auto_ack=True,​
 on_message_callback=callback)

○​ Lastly consume the message

channel.start_consuming()

Listing queues
●​ You may want to see how many queues RabbitMQ has. You can do so (as a

privileged user) using:

rabbitmqctl.bat list_queues

AMQP for RabbitMQ
●​ An open standard for passing business messages between applications or

organizations.
●​ Uses a remote procedure call pattern (RPC) to allow one computer (ex: client)

to execute programs or methods on another computer (ex: broker)
○​ Two-way communication: both the broker and client can use RPC to run

programs or call methods on each other
●​ When a command is sent to or from a RabbitMQ broker, all the data needed to

execute the command is included in a data structure called a frame.

Key Features

●​ AMQP was designed with the following main characteristics as goals:
○​ Security
○​ Reliability
○​ Interoperability
○​ Standard
○​ Open

Frames

●​ A frame is a chunk of data that is used to send information from RabbitMQ to
your application and vice-versa

●​ Every frame will have the same basic structure:

○​ Five parts to a frame:

■​ Header: first three
●​ type of frame (0 - 1; 1 byte)
●​ the channel the frame belongs to (1 - 3; 2 bytes)
●​ size, in bytes (3 -7; 4 bytes)

■​ Payload: varies accordingly with frame type (7 - size + 7)
■​ End-byte marker: to determine end of frame (size + 8)

●​ Types of frames:
○​ Protocol header: the frame sent to establish a new connection between

the broker (RabbitMQ) and a client
○​ Method frame: Carries a RPC request or response.

■​ Ex: when we are publishing a message, our application calls
Basic.Publish, and this message is carried in a method frame that
will tell RabbitMQ that a client is going to publish a message.

○​ Content header: Certain specific methods carry a content (like
Basic.Publish, for instance, that carries a message to be published). The
content header frame is used to send the properties of this content.

○​ Body: the frame with the actual content of your message, and can be split
into multiple different frames if the message is too big

■​ Default size: 131KB
○​ Heartbeat: Used to confirm that a given client is still alive. If no response

in a timely fashion, the client will be disconnected (considered dead).

Establishing a Connection

●​ Protocol header: this header specifies protocol and version being used (e.g.
AMQP 0-9-1)

●​ Connection.Start: this method includes parameters such as the server
properties, supported authentication mechanisms, and supported locales.
(connection parameters + authentication mechanism and locale)

●​ Connection.Secure: a secure connection negotiation, which could request
security- related parameters from client (security settings)

●​ Connection.Tune: this method includes tuning parameters such as channel
frame, frame max, heartbeat interval, etc. (connection configuration)

●​ Connection.Open: indicates connection setup is now complete (connection
open)

●​ Connection._-Ok: acknowledgments indicating that the client has received
and accepted the broker's requests

Declaring a Queue

●​ Queue.Declare: client sends this method to the broker to declare (create) a

queue. It specifies the queue's properties such as its name, durability,
exclusivity, and auto-delete behavior.

●​ Queue.Declare-Ok: confirm that the queue has been successfully declared. It
includes details about the queue, such as its name, message count, and
consumer count.

Publishing a Message

●​ Basic.Publish: initiate the publishing of a message. It specifies the target

exchange and the routing key for the message.
●​ Content Header Frame: provide metadata about the message, such as its

size, content type, and delivery mode.
●​ Body: contains the actual message payload. Can be multiple frames (if too big)

Consuming a Message

●​ Basic.Consume: tells the broker to start consuming messages from a

specified queue; includes parameters such as the queue name and consumer
tag.

●​ Basic.Consume-Ok: confirms that the broker is ready to deliver messages
●​ Basic.Deliver: Used to deliver a message. It includes metadata such as the

delivery tag, exchange, and routing key.
●​ Content Header Frame: provide metadata about the message, such as its

size, content type, and delivery mode.
●​ Body: contains the actual message payload. Can be multiple frames (if too big)
●​ Basic.Ack: client acknowledges it has received and processed message.

This then allows broker to remove message from queue.

Messaging Patterns

Competing Consumers

●​ The computing consumers or work queue pattern is used to distribute

messages to multiple workers. Each task is delivered to exactly one worker.
●​ Main idea:

○​ Avoid doing a resource-intensive task (ex: processing an image)
immediately in which we have to wait for it to complete. Instead, we
schedule the task to be done later.

○​ Encapsulate a task as a message and send it to the queue. A worker
process running in the background will pop the tasks and eventually
execute the job.

●​ This concept is especially useful in web applications where it's impossible to
handle a complex task during a short HTTP request window.

Round-robin dispatching

●​ One of the advantages of using a Work Queue is the ability to easily parallelise
work. If we are building up a backlog of work, we can just add more workers
and that way, scale easily (Scalability ↑ Reliability ↑).

●​ By default, RabbitMQ will send each message to the next consumer, in
sequence

Message Acknowledgement

●​ An ack(nowledgement) is sent back by the consumer to tell RabbitMQ that a
particular message had been received, processed and that RabbitMQ is free to
delete it.

●​ If a consumer dies (its channel is closed, connection is closed, or TCP
connection is lost) without sending an ack, RabbitMQ will re-queue it and
deliver it to another worker, if available.

●​ Manual message acknowledgments are turned on by default.

ch.basic_ack(delivery_tag = method.delivery_tag)

Message Durability

●​ When RabbitMQ quits or crashes it will forget the queues and messages
●​ To make sure that messages aren't lost: we need to mark both the queue and

messages as durable.
○​ Note: RabbitMQ doesn't allow you to redefine an existing queue with

different parameters. So you must make a new queue if needed.

queue​
channel.queue_declare(queue='task_queue', durable=True)​
​
message​
channel.basic_publish(exchange='',​
 routing_key="task_queue",​
 body=message,​
 properties=pika.BasicProperties(​
 delivery_mode = pika.DeliveryMode.Persistent​
))

Fair Dispatch

●​ In situations where one worker consumes messages faster than another
(unequal distribution due to round-robin dispatch).

●​ Solution: set prefetch count with the value of 1 (tells RabbitMQ to not give more
than 1 message at a time to a worker)

 channel.basic_qos(prefetch_count=1)

Publish/Subscribe

●​ Main idea:

○​ Deliver messages to multiple consumers (multiple consumers receive the

same message).
■​ Note: The message is not saved multiple times in memory, rather,

the binded queues just all have the same reference to that
message in memory

○​ The producer sends messages directly to the exchange, where it follows
its rules for distributing the messages.

Exchanges

●​ Uses the exchange type fanout

channel.exchange_declare(exchange='logs',

 exchange_type='fanout')

channel.basic_publish(exchange='logs',​
 routing_key='',​
 body=message)

the ‘exchange’ parameter is the name of the exchange

no routing_key to send messages to all queues

Temporary Queue

●​ Since, we want to hear all messages, we need:
○​ a fresh empty queue everytime we connect to RabbitMQ

result = channel.queue_declare(queue='')​
queue='' => server chooses a random queue name

○​ If the consumer connection is closed, the queue should be deleted

result = channel.queue_declare(queue='', exclusive=True)

Bindings

●​ The relationship between exchange and a queue is called a binding

channel.queue_bind(exchange='logs',​
 queue=result.method.queue)

Routing

●​ Main idea:

○​ Similar to pub/sub but only subscribe to a subset of the messages
●​ Advantage:

○​ Multiple queues can be bound to the direct exchange using the same
binding keys

○​ A single queue can also have multiple bindings
●​ Limitation: can’t do routing on multiple criterias

○​ Solution: Topic Exchange

Direct Exchange

●​ Uses the exchange type direct and a routing_key
●​ A message goes to the queues whose binding key exactly matches the

routing key of the message

channel.exchange_declare(exchange='direct_logs',​
 exchange_type='direct')​
​
channel.basic_publish(exchange='direct_logs',​
 routing_key='black',​
 body=message)

Bindings

●​ Must create a binding with a key

channel.queue_bind(exchange=exchange_name,​
 queue=queue_name,​
 routing_key='black')

Topics

●​ Main Idea:

○​ A message sent with a particular routing key will be delivered to all the
queues that are bound with a matching binding key

●​ Messages sent to a topic can’t have an arbitrary routing key – must be a list of
words, delimited by dots.

○​ Words: can be anything – usually specify features connected to message
■​ Ex: "stock.usd.nyse", "nyse.vmw", "quick.orange.rabbit"
■​ Limit: 255 bytes

●​ Binding key must also be in the same form (list of words, delimited by dots).
However, there are two special cases:

○​ * (star) can substitute for exactly one word.
○​ # (hash) can substitute for zero or more words.

Topic Exchange

●​ Uses the exchange type topic and a routing_key
●​ A message goes to the queues whose binding key exactly matches the

routing key of the message
○​ * (star) can substitute for exactly one word.
○​ # (hash) can substitute for zero or more words.

channel.exchange_declare(exchange='topic_logs',​
 exchange_type='topic')​

<celerity>.<color>.<species>​
channel.basic_publish(exchange='topic_logs',​
 routing_key='lazy.pink.rabbit',​
 body=message)

channel.basic_publish(exchange='topic_logs',​
 routing_key='quick.orange.rabbit',​
 body=message)

Bindings

●​ Must create a binding with a key

interested in all black animals

channel.queue_bind(exchange=exchange_name,​
 queue=queue_name,​
 routing_key='*.black.*')

interested in all quick animals

channel.queue_bind(exchange=exchange_name,​
 queue=queue_name,​
 routing_key='quick.#')

Request Reply Protocol

●​ So far, our patterns focused on one-way communication. Sometimes, we may

want two-way conversation. This brings us to the Request Reply Protocol.
●​ Request-Reply has two participants:

○​ Requestor – Sends a request message and waits for a reply message.
■​ The request is either broadcast to all interested parties (pub/sub) or

processed by a single consumer (direct)
■​

○​ Replier – Receives the request message and responds with a reply
message.

■​ Almost always point to point (direct)

Receiving a Reply

●​ The requestor has two approaches to receive a reply:
○​ Synchronous Block

■​ Mechanism: A single thread sends a request, blocks to wait for the
reply message, then processes the reply.

■​ Pros: Simple to implement.
■​ Cons: Difficult to recover if the requestor crashes. Only one

outstanding request per thread, as the reply channel is private.
○​ Asynchronous Block

■​ Mechanism: One thread sends a request and sets up a callback for
the reply. A separate thread listens for replies and invokes the
appropriate callback.

■​ Pros: Allows multiple outstanding requests to have a shared reply
channel. Easier to recover if the requestor crashes by restarting the
reply thread.

■​ Cons: More complex due to the need to re-establish the caller's
context in the callback.

Remote Procedure Call (RPC)
●​ RPC is a method in which a computer program executes a procedure in another

address space (a remote computer) while waiting for the result.
●​ Can be a powerful tool in setting up distributed systems.
●​ By using RabbitMQ for RPC, you can ensure that your systems are loosely

coupled, scalable, and resilient to failures.
●​ To build an RPC we need a client and a scalable RPC server.

Client Interface

●​ Exposes a method 'call' which sends an RPC request and blocks until the
answer is received

fibonacci_rpc = FibonacciRpcClient()​
result = fibonacci_rpc.call(4)​
print(f"fib(4) is {result}")

Note on RPC

●​ Consider the following advice:
○​ Make sure it's obvious which function call is local and which is remote.
○​ Document your system. Make the dependencies between components

clear.
○​ Handle error cases. How should the client react when the RPC server is

down for a long time?
●​ When in doubt avoid RPC. If you can, you should use an asynchronous pipeline

- instead of RPC-like blocking

Callback Queue

●​ A client sends a request message and a server replies with a response
message.

●​ In order to receive a response the client needs to send a 'callback' queue
address with the request.

result = channel.queue_declare(queue='', exclusive=True)​
callback_queue = result.method.queue​
​
channel.basic_publish(exchange='',​
 routing_key='rpc_queue',​
 properties=pika.BasicProperties(​
 reply_to = callback_queue,​
),​
 body=request)​
​
... and some code to read a response message from the

callback_queue ...

Message Properties

●​ delivery_mode: Marks a message as persistent (with a value of 2) or transient
(any other value).

●​ content_type: Used to describe the mime-type of the encoding. Ex:
application/json.

●​ reply_to: Commonly used to name a callback queue.
●​ correlation_id: Useful to correlate RPC responses with requests.

Correlation Id

●​ It’s better to create a single callback queue per client.
●​ How to then identify which request the response belongs to? correlation_id

(unique)
○​ Unknown correlation_id messages will be discarded

■​ Why ignore rather than fail? race condition can arise with server

Other Exchanges

Exchange to Exchange Routing

●​ Exchanges cannot only be bound to queues, but they can also be bound to

other exchanges.
○​ Flexibility ↑

Headers Exchange

●​ Uses the contents of a headers table to determine where to route the message
rather than the routing key.

Consistent Hashing Exchange

●​ A plugin that allows us to possibly equally distribute messages between the

bound queues.

Weights

●​ When a queue is bound to a Consistent Hash exchange, the binding key is a
number which indicates the binding weight (allocated hash space)

○​ 1 ensures reasonably even balancing (uniform distribution)
●​ Note: be careful when adding additional bindings once the original bindings

have been added

Routing

●​ Hashing distributes routing keys among queues, not message payloads among
queues; all messages with the same routing key/hash will go the same queue

●​ In other words, queues with a higher binding weight or hash space, will have
more buckets for which a hash partition can fall into.

●​ Each message gets delivered to at most one queue. On average, a message
gets delivered to exactly one queue.

Publishing Options

Basic Properties

●​ contentType: MIME type of the message (e.g., text/plain,

application/json, application/pdf).

●​ contentEncoding: Encoding type (e.g., gzip, UTF-8, deflate, compress).
●​ headers: Custom metadata as key-value pairs.
●​ deliveryMode: Message persistence level (0 for non-persistent, 1 for persistent).
●​ priority: Message priority (higher value = higher priority).
●​ correlationId: ID for correlating RPC requests and responses.
●​ replyTo: Queue name for RPC responses.
●​ expiration: Message TTL (time-to-live).
●​ messageId: Unique identifier for the message.
●​ timestamp: Time when the message was created.
●​ type: Message type (e.g., order, invoice).
●​ userId: ID of the user sending the message (must be the same userId as

loggedIn user).
●​ appId: ID of the application sending the message.
●​ clusterId: ID of the RabbitMQ cluster.

Speed vs Resiliency Trade Offs

Exchange Options

Alternate Exchanges

●​ Purpose: Handle messages that an exchange cannot route (no bound queues or
no matching bindings).

●​ Exchange type: can be any, but fanout is most common
●​ Use Cases:

○​ Detecting when clients publish unroutable messages.
○​ Implementing "or else" routing where unroutable messages are handled

by a generic handler.

How to Define an Alternate Exchange

●​ Via Policies: Recommended method as it simplifies changes (e.g., during
upgrades).

○​ Note: The default exchange does not support alternate exchanges as it is
a special-case in the code, not a real exchange.

●​ Via Exchange Arguments: Optional method at exchange declaration time.
○​ If both policy and arguments specify an AE, the argument-specified AE

takes precedence.

Dead Letter Exchanges

●​ Purpose: Republish messages from a queue to an exchange when certain
events occur.

●​ Exchange Type: can be of the usual exchange types and are declared as
normal

Events Triggering Dead-Lettering:

●​ Message negatively acknowledged (basic.reject or basic.nack with

requeue=false).
●​ Message expires due to per-message TTL.
●​ Queue exceeds its length limit.
●​ Message returned more times to a quorum queue than the delivery limit.
●​ Note: If an entire queue expires, its messages are not dead-lettered.

How to Define a DLX

●​ Via Queue Arguments: Specified at queue declaration time.
●​ Via Policies: Recommended for easier reconfiguration without redeployment.

○​ If both policy and arguments specify a DLX, the argument-specified DLX
takes precedence.

Message Acknowledgements

basic.ack (Acknowledgment)

●​ Confirms successful processing of one (multiple=false) or more messages

(multiple=true).
●​ Removes message(s) from the queue.
●​ Acknowledges messages up to a specified delivery tag.

basic.nack (Negative Acknowledgment)

●​ Indicates failure to process one (multiple=false) or more messages

(multiple=true).

●​ Allows requeueing (requeue=true) or discarding (requeue=false) messages.
●​ Applies to messages up to a specified delivery tag.

basic.reject

●​ Rejects individual messages.
●​ Allows requeueing (requeue=true) or discarding (requeue=false) of each

message.
●​ Operates on messages identified by their delivery tag.

Delivery Tag: Unique identifier for each message, used by acknowledgment methods
to specify ranges of messages to acknowledge or reject.

Queue Options

Durable

●​ Determines if the queue survives broker restarts.
●​ Usage: durable=True ensures the queue persists messages to disk.

Exclusive

●​ Restricts queue usage to the connection that declared it.
●​ Usage: exclusive=True makes the queue accessible only to the declaring

connection.

Auto-Delete

●​ Automatically deletes the queue when no longer in use.
●​ Usage: auto_delete=True removes the queue when all consumers have

finished using it.

Arguments

●​ Additional properties defined by key-value pairs.
●​ Usage: Customizes queue behavior, e.g., setting message TTL or maximum

length.

Maximum Length

●​ Limits the number of messages a queue holds.
●​ Usage: max_length=N restricts the queue to N messages.

Message TTL (Time-to-Live)

●​ Defines how long messages remain in the queue before expiration.
●​ Usage: x-mxessage_ttl=milliseconds removes messages older than the

specified time.

Auto-Expire

●​ Automatically deletes the queue when no longer used or expired.
●​ Usage: expires=milliseconds removes the queue if unused or expired.

Troubleshooting

Cannot Delete epmd.exe after Uninstalling RabbitMQ and Erlang

This error happens when you uninstall RabbitMQ (and optionally Erlang) but cannot
delete one or more programs or folders associated with RabbitMQ or Erlang.

One common example would be "epmd.exe". This occurs because these files are still
being held open by an active process and can present a problem. To fix this:

●​ Open the command prompt as Administrator and run the tasklist command.
●​ Find the epmd.exe process (or whichever process cannot be deleted) and note

the process ID by running the taskkill /pid {PROCESSID} /F command.

taskkill /pid 1234 /f

●​ Delete the file or folder.

References
●​ https://www.youtube.com/playlist?list=PLalrWAGybpB-UHbRDhFsBgXJM1g6T4

IvO
●​ https://www.rabbitmq.com/docs
●​ https://www.brianstorti.com/speaking-rabbit-amqps-frame-structure/
●​ https://www.baeldung.com/java-rabbitmq-channels-connections
●​ https://github.com/rabbitmq/rabbitmq-server/blob/main/deps/rabbitmq_consist

ent_hash_exchange/README.md
●​ https://www.cogin.com/articles/rabbitmq/rabbitmq-exchanges-guide.php
●​ https://www.enterpriseintegrationpatterns.com/patterns/messaging/index.html

https://www.youtube.com/playlist?list=PLalrWAGybpB-UHbRDhFsBgXJM1g6T4IvO
https://www.youtube.com/playlist?list=PLalrWAGybpB-UHbRDhFsBgXJM1g6T4IvO
https://www.rabbitmq.com/docs
https://www.brianstorti.com/speaking-rabbit-amqps-frame-structure/
https://www.baeldung.com/java-rabbitmq-channels-connections
https://github.com/rabbitmq/rabbitmq-server/blob/main/deps/rabbitmq_consistent_hash_exchange/README.md
https://github.com/rabbitmq/rabbitmq-server/blob/main/deps/rabbitmq_consistent_hash_exchange/README.md
https://www.cogin.com/articles/rabbitmq/rabbitmq-exchanges-guide.php
https://www.enterpriseintegrationpatterns.com/patterns/messaging/index.html

	RabbitMQ
	Windows and Docker Installation
	Chocolatey Installation (Preferred)
	Start the server as application
	Stop RabbitMQ server on localhost

	Management UI Access
	Management UI Access

	
	Default User Access

	Core Concepts
	Message Broker
	Producer
	Consumer
	Exchanges
	Queues
	Bindings
	Connections
	Channels

	First Program - Python
	(using the Pika Python client)
	Sending
	Receiving

	Listing queues
	AMQP for RabbitMQ
	Key Features
	Frames
	Establishing a Connection
	Declaring a Queue
	Publishing a Message
	Consuming a Message

	Messaging Patterns
	Competing Consumers
	Round-robin dispatching
	Message Acknowledgement
	Message Durability
	Fair Dispatch

	Publish/Subscribe
	Exchanges
	Temporary Queue
	Bindings

	Routing
	Direct Exchange
	Bindings

	Topics
	Topic Exchange
	Bindings

	Request Reply Protocol
	Receiving a Reply

	Remote Procedure Call (RPC)
	Client Interface
	Note on RPC

	Callback Queue
	Message Properties

	Correlation Id

	Other Exchanges
	Exchange to Exchange Routing
	Headers Exchange
	
	Consistent Hashing Exchange
	Weights
	Routing

	Publishing Options
	Basic Properties
	Speed vs Resiliency Trade Offs

	Exchange Options
	Alternate Exchanges
	How to Define an Alternate Exchange

	Dead Letter Exchanges
	Events Triggering Dead-Lettering:
	How to Define a DLX

	Message Acknowledgements
	basic.ack (Acknowledgment)
	basic.nack (Negative Acknowledgment)
	basic.reject

	Queue Options
	Durable
	Exclusive
	Auto-Delete
	Arguments
	Maximum Length
	Message TTL (Time-to-Live)
	Auto-Expire

	Troubleshooting
	Cannot Delete epmd.exe after Uninstalling RabbitMQ and Erlang

	
	References

